Detailed Information

Cited 96 time in webofscience Cited 95 time in scopus
Metadata Downloads

Abiotic tooth enamel

Authors
Yeom, BongjunSain, TrishaLacevic, NaidaBukharina, DariaCha, Sang-HoWaas, Anthony M.Arruda, Ellen M.Kotov, Nicholas A.
Issue Date
Mar-2017
Publisher
NATURE PUBLISHING GROUP
Citation
NATURE, v.543, no.7643, pp.95 - 98
Indexed
SCIE
SCOPUS
Journal Title
NATURE
Volume
543
Number
7643
Start Page
95
End Page
98
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/20483
DOI
10.1038/nature21410
ISSN
0028-0836
Abstract
Tooth enamel comprises parallel microscale and nanoscale ceramic columns or prisms interlaced with a soft protein matrix(1-3). This structural motif is unusually consistent across all species from all geological eras(4-6). Such invariability-especially when juxtaposed with the diversity of other tissues-suggests the existence of a functional basis. Here we performed ex vivo replication of enamel-inspired columnar nanocomposites by sequential growth of zinc oxide nanowire carpets followed by layer-by-layer deposition of a polymeric matrix around these. We show that the mechanical properties of these nanocomposites, including hardness, are comparable to those of enamel despite the nanocomposites having a smaller hard-phase content. Our abiotic enamels have viscoelastic figures of merit (VFOM) and weight-adjusted VFOM that are similar to, or higher than, those of natural tooth enamels-we achieve values that exceed the traditional materials limits of 0.6 and 0.8, respectively. VFOM values describe resistance to vibrational damage, and our columnar composites demonstrate that lightweight materials of unusually high resistance to structural damage from shocks, environmental vibrations and oscillatory stress can be made using biomimetic design. The previously inaccessible combinations of high stiffness, damping and light weight that we achieve in these layer-by-layer composites are attributed to efficient energy dissipation in the interfacial portion of the organic phase. The in vivo contribution of this interfacial portion to macroscale deformations along the tooth's normal is maximized when the architecture is columnar, suggesting an evolutionary advantage of the columnar motif in the enamel of living species. We expect our findings to apply to all columnar composites and to lead to the development of high-performance load-bearing materials.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yeom, Bong jun photo

Yeom, Bong jun
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE