Detailed Information

Cited 11 time in webofscience Cited 11 time in scopus
Metadata Downloads

Continuous Flow Synthesis of Anisotropic Cadmium Selenide and Zinc Selenide Nanoparticles

Authors
Kumar, VivekFuster, Hector A.Oh, Nu riZhai, YouDeshpande, KishoriShim, MoonsubKenis, Paul J. A.
Issue Date
Mar-2017
Publisher
WILEY-V C H VERLAG GMBH
Keywords
anisotropic nanoparticles; cadmium selenide; microreactor; semiconductors; zinc selenide
Citation
CHEMNANOMAT, v.3, no.3, pp.204 - 211
Indexed
SCIE
SCOPUS
Journal Title
CHEMNANOMAT
Volume
3
Number
3
Start Page
204
End Page
211
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/20484
DOI
10.1002/cnma.201600296
ISSN
2199-692X
Abstract
Anisotropic semiconductor nanoparticles find use in various applications ranging from electronics to photocatalysis and biolabeling. Batch synthesis methods typically used for their synthesis are often hampered by slow mixing, slow heating/cooling, and lack of batch-to-batch reproducibility, especially when scaling up. The modular continuous flow reactor reported here overcomes some of these challenges. It enables air-sensitive syntheses at temperatures as high as 750 °C, supports rapid heating and cooling times (≈1 s or less), and enables syntheses that involve reagents that are viscous or even solid at room temperature. For validation we pursued two systems: the synthesis of (i) CdSe nanorods and bipods, and of (ii) ZnSe nanorods. Nanoparticles with low variance in quantum confined dimension (width) −16 % for CdSe and 11 % for ZnSe were obtained. For comparison, the same products were also synthesized using two batch approaches, hot-injection and heat-up, under similar conditions. The batch products were less uniform: 30 % variance in quantum confined dimension. Furthermore, the lack of precise temperature control in the batch processes resulted in CdSe nanorods with irregular-shaped, jagged branches whereas the continuous process produced CdSe nanorods with uniform, straight branches. The modular continuous flow reactor design is suited for scale up, allowing working flow rates as high as ≈10 mL min⁻¹, which translates into a production rate of ≈158 g day⁻¹ for CdSe.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Oh, Nuri photo

Oh, Nuri
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE