Detailed Information

Cited 27 time in webofscience Cited 25 time in scopus
Metadata Downloads

Ultimate terahertz field enhancement of single nanoslits

Full metadata record
DC Field Value Language
dc.contributor.authorBahk, Young-Mi-
dc.contributor.authorHan, Sanghoon-
dc.contributor.authorRhie, Jiyeah-
dc.contributor.authorPark, Joohyun-
dc.contributor.authorJeon, Hyeongtag-
dc.contributor.authorPark, Namkyoo-
dc.contributor.authorKim, Dai-Sik-
dc.date.accessioned2021-08-02T15:51:17Z-
dc.date.available2021-08-02T15:51:17Z-
dc.date.created2021-05-12-
dc.date.issued2017-02-
dc.identifier.issn2469-9950-
dc.identifier.urihttps://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/21197-
dc.description.abstractA single metallic slit is the simplest plasmonic structure for basic physical understanding of electromagnetic field confinement. By reducing the gap size, the field enhancement is expected to first go up and then go down when the gap width becomes subnanometer because of the quantum tunneling effects. A fundamental question is whether we reach the classical limit of field enhancement before entering the quantum regime, i.e., whether the quantum effects undercut the highest field enhancement classically possible. Here, by performing terahertz time domain spectroscopy on single slits of widths varying from 1.5 nm to 50 μm, we show that ultimate field enhancement determined by the wavelength of light and film thickness can be reached before we hit the quantum regime. Our paper paves way toward designing a quantum plasmonic system with maximum control yet without sacrificing the classical field enhancements.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER PHYSICAL SOC-
dc.titleUltimate terahertz field enhancement of single nanoslits-
dc.typeArticle-
dc.contributor.affiliatedAuthorJeon, Hyeongtag-
dc.identifier.doi10.1103/PhysRevB.95.075424-
dc.identifier.scopusid2-s2.0-85014511858-
dc.identifier.wosid000394658900012-
dc.identifier.bibliographicCitationPHYSICAL REVIEW B, v.95, no.7-
dc.relation.isPartOfPHYSICAL REVIEW B-
dc.citation.titlePHYSICAL REVIEW B-
dc.citation.volume95-
dc.citation.number7-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusRAMAN-SCATTERING-
dc.subject.keywordPlusQUANTUM PLASMONICS-
dc.subject.keywordPlusMOLECULES-
dc.subject.keywordPlusNANOGAP-
dc.subject.keywordPlusGAPS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusNANOANTENNAS-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusAPERTURES-
dc.subject.keywordPlusWAVES-
dc.identifier.urlhttps://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.075424-
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 신소재공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeon, Hyeongtag photo

Jeon, Hyeongtag
COLLEGE OF ENGINEERING (SCHOOL OF MATERIALS SCIENCE AND ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE