Detailed Information

Cited 27 time in webofscience Cited 28 time in scopus
Metadata Downloads

Fluorine-doped porous carbon-decorated Fe3O4-FeF2 composite versus LiNi0.5Mn1.5O4 towards a full battery with robust capability

Authors
Ming, HaiMing, JunKwak, Won-JinYang, WenjingZhou, QunZheng, JunweiSun, Yang Kook
Issue Date
Jul-2015
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Metal oxide; anode; carbon; cathode; battery
Citation
ELECTROCHIMICA ACTA, v.169, pp.291 - 299
Indexed
SCIE
SCOPUS
Journal Title
ELECTROCHIMICA ACTA
Volume
169
Start Page
291
End Page
299
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/24929
DOI
10.1016/j.electacta.2015.04.108
ISSN
0013-4686
Abstract
A new fluorine-doped porous carbon-decorated Fe3O4-FeF2 composite, referred to as Fe3O4-FeF2@CFx, was prepared for the first time. The formation mechanism is discussed, and a new concept of introducing double layers of FeF2 and CFx into the oxide-based anode is presented for lithium ion batteries. Varying the amount of fluorine precursor, derivatives of Fe3O4@CFx and FeF2@CFx were further obtained, allowing an original analysis of their electrochemical behaviors. As-prepared Fe3O4-FeF2@CFx can deliver a high capacity of 718 mAh g (1) at 50 mA g (1). Under a hash rate of 1600 mAg (1), the capacity of Fe3O4-FeF2@CFx (around 338 mAh g (1)) is higher than that (200 mAh g (1)) of FeF2@CFx. Further, its capacity retention of 97% over 100 cycles is much better than the 59.4% observed for Fe3O4@CFx. The positive effect of the CFx layer on the electronic conductivity and ionic diffusion ability was confirmed. The role of FeF2 in the stabilization of the structure of CFx and Fe3O4 is also discussed. Further, a new battery composed of Fe3O4-FeF2@CFx/LiNi0.5Mn1.5O4 with a robust rate capability was assembled and delivered a reversible capacity of 565 mAh g (1) (vs. anode) at 100 mA g (1) with a high potential of 3.3 V and a capacity retention of 81.5% over 50 cycles.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Sun, Yang Kook photo

Sun, Yang Kook
COLLEGE OF ENGINEERING (DEPARTMENT OF ENERGY ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE