Detailed Information

Cited 8 time in webofscience Cited 7 time in scopus
Metadata Downloads

Generation of Sub-Part-per-Billion Gaseous Volatile Organic Compounds at Ambient Temperature by Headspace Diffusion of Aqueous Standards through Decoupling between Ideal and Nonideal Henry's Law Behavior

Authors
Kim, Yong-HyunKim, Ki Hyun
Issue Date
Apr-2013
Publisher
AMER CHEMICAL SOC
Citation
ANALYTICAL CHEMISTRY, v.85, no.10, pp.5087 - 5094
Indexed
SCIE
SCOPUS
Journal Title
ANALYTICAL CHEMISTRY
Volume
85
Number
10
Start Page
5087
End Page
5094
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/26743
DOI
10.1021/ac4004425
ISSN
0003-2700
Abstract
In the analysis of volatile organic compounds in air, the preparation of their gaseous standards at low (sub-ppb) concentration levels with high reliability is quite difficult. In this study, a simple dynamic headspace-based approach was evaluated as a means of generating vapor-phase volatile organic compounds from a liquid standard in an impinger at ambient temperature (25 degrees C). For a given sampling time, volatile organic compound vapor formed in the headspace was swept by bypassing the sweep gas through the impinger and collected four times in quick succession in separate sorbent tubes. In each experiment, a fresh liquid sample was used for each of the four sampling times (5, 10, 20, and 30 min) at a steady flow rate of 50 mL min(-1). The air-water partitioning at the most dynamic (earliest) sweeping stage was established initially in accord with ideal Henry's law, which was then followed by considerably reduced partitioning in a steady-state equilibrium (non-ideal Henry's law#. The concentrations of gaseous volatile organic compounds, collected after the steady-state equilibrium, reached fairly constant values: for instance, the mole fraction of toluene measured at a sweeping interval of 10 and 30 min averaged 1.10 and 0.99 nmol mol#-1#, respectively #after the initial 10 min sampling#. In the second stage of our experiment, the effect of increasing the concentrations of liquid spiking standard was also examined by collecting sweep gas samples from two consecutive 10 min runs. The volatile organic compounds, collected in the first and second 10 min sweep gas samples, exhibited ideal and nonideal Henry's law behavior, respectively. From this observation, we established numerical relationships to predict the mole fraction #or mixing ratio) of each volatile organic compound in steady-state equilibrium in relation to the concentration of standard spiked into the system. This experimental approach can thus be used to produce sub-ppb levels of gaseous volatile organic compounds in a constant and predictable manner.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 건설환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Ki Hyun photo

Kim, Ki Hyun
COLLEGE OF ENGINEERING (DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE