Detailed Information

Cited 9 time in webofscience Cited 9 time in scopus
Metadata Downloads

High performance multicomponent bifunctional catalysts for overall water splitting

Authors
Bose, RanjithJothi, Vasanth RajendiranKaruppasamy, K.Alfantazi, AkramYi, Sung Chul
Issue Date
Jul-2020
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v.8, no.27, pp.13795 - 13805
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS CHEMISTRY A
Volume
8
Number
27
Start Page
13795
End Page
13805
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/32773
DOI
10.1039/d0ta02697b
ISSN
2050-7488
Abstract
Designing highly active bifunctional electrocatalysts from Earth-abundant elements has great prospects for substituting precious-metal based catalysts in energy conversion processes, such as water splitting. Here, we report a bifunctional catalyst comprising transition metal hydroxides (TMOHs) and transition metal sulphides (TMSs) grown on a nickel foam (NF) surface, denoted as NiFeOH/CoSx/NF, that delivers high electrocatalytic activity for both the oxygen evolution reaction (OER: ultra-low overpotential of 211 mV at a current density of 50 mA cm(-2)) and the hydrogen evolution reaction (HER: overpotential of 146 mV at a current density of 10 mA cm(-2)) in alkaline media, representing one of the best bifunctional catalytic performances yet reported for a non-noble metal based system. From our experimental observations, the significant improvement of the catalytic activity emanates from the synergistic effects of NiFeOH and CoSx, due to the optimization of their electronic configurations, thereby creating novel characteristics. Employing this catalyst system as both the anode and the cathode for overall water splitting in a water electrolyzer delivers 10 mA cm(-2)at a low cell potential of 1.563 V with excellent long-term electrocatalytic functionalities over 10 h of continuous operation. These findings represent the design principle for developing multi-component bifunctional electrocatalysts for overall water splitting.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yi, Sung Chul photo

Yi, Sung Chul
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE