Detailed Information

Cited 22 time in webofscience Cited 23 time in scopus
Metadata Downloads

Highly interconnected hollow graphene nanospheres as an advanced high energy and high power cathode for sodium metal batteries

Authors
Thangavel, RanjithKannan, Aravindaraj G.Ponraj, RubhaSun, XueliangKim, Dong-WonLee, Yun-Sung
Issue Date
Jun-2018
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v.6, no.21, pp.9846 - 9853
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS CHEMISTRY A
Volume
6
Number
21
Start Page
9846
End Page
9853
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/32951
DOI
10.1039/c8ta00153g
ISSN
2050-7488
Abstract
Developing sodium based energy storage systems that retain high energy density at high power along with stable cycling is of paramount importance to meet the energy demands of next generation applications. This requires the development of electrodes beyond the conventional intercalation-based chemistry to overcome the sluggish diffusion-limited reaction kinetics and limited cycle life. Herein, we report a rationally designed hollow graphene nanosphere (HGS) cathode, which utilizes non-destructive, ultra-fast surface redox reactions at oxygen functional groups and delivers a discharge capacity of approximate to 155 mA h g(-1) (0.1 A g(-1)) corresponding to a high energy of approximate to 415 W h kg(-1) and retains approximate to 88 W h kg(-1) of energy at a remarkable specific power of approximate to 84 kW kg(-1) (40 A g(-1)), which are beyond the capabilities of intercalation-based electrodes. Moreover, the achieved cycling performance (86% capacity retention after 50000 cycles at 10 A g(-1)) is the most stable cathode performance reported so far. The rationally designed sodium metal battery full cells with a sodium metal deposited aluminium current collector anode and the HGS cathode showed a similar sodium ion storage performance with high capacity, good rate capability, and stability. We certainly believe that the current research could direct the future research development towards transition metal-free, ultra-high power and super stable cathodes for sodium energy storage devices.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Dong Won photo

Kim, Dong Won
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE