Detailed Information

Cited 152 time in webofscience Cited 157 time in scopus
Metadata Downloads

Redox Mediators for Li–O2 Batteries: Status and Perspectives

Authors
Park, Jin-BumLee, Seon HwaJung, Hun-GiAurbach, DoronSun, Yang-Kook
Issue Date
Jan-2018
Publisher
WILEY-V C H VERLAG GMBH
Keywords
additives; electrolytes; lithium-oxygen batteries; redox mediators; soluble catalysts
Citation
ADVANCED MATERIALS, v.30, no.1
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED MATERIALS
Volume
30
Number
1
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/3937
DOI
10.1002/adma.201704162
ISSN
0935-9648
Abstract
Li–O2 batteries have received much attention due to their extremely large theoretical energy density. However, the high overpotentials required for charging Li–O2 batteries lower their energy efficiency and degrade the electrolytes and carbon electrodes. This problem is one of the main obstacles in developing practical Li–O2 batteries. To solve this problem, it is important to facilitate the oxidation of Li2O2 upon charging by using effective electrocatalysis. Using solid catalysts is not too effective for oxidizing the electronically isolating Li-peroxide layers. In turn, for soluble catalysts, red-ox mediators (RMs) are homogeneously dissolved in the electrolyte solutions and can effectively oxidize all of the Li2O2 precipitated during discharge. RMs can decompose solid Li2O2 species no matter their size, morphology, or thickness and thus dramatically increase energy efficiency. However, some negative side effects, such as the shuttle reactions of RMs and deterioration of the Li-metal occur. Therefore, it is necessary to study the activity and stability of RMs in Li–O2 batteries in detail. Herein, recent studies related to redox mediators are reviewed and the mechanisms of redox reactions are illustrated. The development opportunities of RMs for this important battery technology are discussed and future directions are suggested.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 에너지공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Sun, Yang Kook photo

Sun, Yang Kook
COLLEGE OF ENGINEERING (DEPARTMENT OF ENERGY ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE