Detailed Information

Cited 5 time in webofscience Cited 5 time in scopus
Metadata Downloads

Dynamic Responses of a Cable-stayed Bridge under a High Speed Train with Random Track Irregularities and a Vertical Seismic Load

Authors
Mu, DiGwon, Sun-GilChoi, Dong-Ho
Issue Date
Dec-2016
Publisher
KOREAN SOC STEEL CONSTRUCTION-KSSC
Keywords
cable-stayed bridge; high speed train; random track irregularities; seismic load; nonlinear dynamic analysis
Citation
INTERNATIONAL JOURNAL OF STEEL STRUCTURES, v.16, no.4, pp.1339 - 1354
Indexed
SCIE
SCOPUS
KCI
Journal Title
INTERNATIONAL JOURNAL OF STEEL STRUCTURES
Volume
16
Number
4
Start Page
1339
End Page
1354
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/4875
DOI
10.1007/s13296-016-0104-x
ISSN
1598-2351
Abstract
The dynamic analysis of train-bridge systems has been a popular research topic for a long time; however, studies on cable stayed bridges subject to train and seismic loads remain limited. Cable-stayed bridges can experience large vibrations under external periodical loads due to the high flexibility caused by their long decks and cables. Previous approaches to modeling the cables have limitations in accuracy, principle, or calculation efficiency, making them unsuitable for dynamic analysis with numerous time steps for long-span bridges with many cables. Furthermore, track irregularities and earthquakes bring additional excitations to the train-bridge system and threaten its structural and running safety. Thus, an accurate and fast approach to modeling and analyzing cable-stayed bridges under train loads and other excitations is needed. In this study, an improved parabolic cable element is included for dynamic analysis. This cable element facilitates a faster calculation while maintaining an accuracy similar to that of a catenary cable element. The coupled equation-of-motion of the train and cable-stayed bridge system is derived and solved via the time integration method. The effects of railway track quality and seismic load are investigated through the dynamic responses of train-bridge systems by considering various classes of tracks and levels of seismic intensities, respectively. The impact factors of the vertical displacement of the deck and the tensions in cables are used to represent the behaviors of the bridge, while the maximum accelerations of vehicle bodies are used to represent the behaviors of the train. Track irregularities and seismic load significantly increase the responses of the bridge and train. With increased train speed, the negative effects of poor quality track on the responses of the train-bridge system increased; however, with increased seismic loads the effects were found to decrease.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 건설환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Dong Ho photo

Choi, Dong Ho
COLLEGE OF ENGINEERING (DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE