Detailed Information

Cited 3 time in webofscience Cited 0 time in scopus
Metadata Downloads

Numerical Development of Concentric Cylinder-Shaped Dual-Functional Catalyst Structure for Enhanced Charge Transport in Polymer Electrolyte Fuel Cells

Authors
Shin, SeunghoLiu, JiawenChung, Sung-JaeUm, Sukkee
Issue Date
Nov-2020
Publisher
WILEY-V C H VERLAG GMBH
Keywords
catalyst utilization; concentric cylinders; dual-functional bilayers; numerical development; statistical analysis
Citation
ADVANCED THEORY AND SIMULATIONS, v.3, no.11, pp.1 - 12
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED THEORY AND SIMULATIONS
Volume
3
Number
11
Start Page
1
End Page
12
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/8802
DOI
10.1002/adts.202000096
ISSN
2513-0390
Abstract
Dual-functional catalyst bilayers of vertical concentric cylinders are proposed and numerically developed using a stochastic modeling approach to improve catalyst utilization for advanced fuel cell applications. A cylindrically bilayered catalyst structure wherein the ion transport materials are confined by concentric outer carbon shells is adopted to increase the number of interconnected electron and ion transport paths. For reliable statistical analysis, each data point is extracted from a set of 25 catalyst layer models to achieve a 95% confidence level. The nanoscale morphologies of the ionomers, including interconnected ion transport networks, surface coverage, and electrochemically active surface areas, are quantitatively evaluated. The statistical investigations reveal that the bilayered cylindrical catalyst structures provide more uniform and improved transport paths for ions and reactants when compared with established catalyst layers. Specifically, the additional ion transport channels in the core of the concentric vertical cylinder enhance catalyst utilization under insufficient ionomer conditions. Furthermore, the bilayered catalyst structures yield remarkably enlarged electrochemically active surface areas, hence facilitating more efficient electron, ion, and reactant transfers to improve catalyst utilization.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher UM, Suk kee photo

UM, Suk kee
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE