Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Tunable current duration in triboelectric generators via capacitive air gaps

Authors
Seo, ByungseokCha, YoungsunKim, SangtaeChoi, Wonjoon
Issue Date
Mar-2021
Publisher
WILEY
Keywords
air gap capacitance; current duration; nanogenerator; time& #8208; averaged energy efficiency; triboelectricity
Citation
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, v.45, no.4, pp.5619 - 5628
Indexed
SCIE
SCOPUS
Journal Title
INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume
45
Number
4
Start Page
5619
End Page
5628
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/8866
DOI
10.1002/er.6188
ISSN
0363-907X
Abstract
Despite the low cost, high power, and wide application areas, impact-type triboelectric generators exhibit limited applicability due to the extremely short current duration, on the order of a millisecond. The high power, short lasting current peak not only results in reduced time-averaged power output but also acts as triboelectric shock to the accompanying circuits, quickly degrading the usability of the generator. Here, we demonstrate tunable triboelectric current duration via controlling the air gap capacitance inserted between the two dielectric plates. In typical contact-type triboelectric generator with nylon/air gap/Polydimethylsiloxane (PDMS) multilayers, decreasing the vertical speed of the dielectric plates from 0.5 cm/s to 0.05 cm/s result in increased current duration from 0.10 second to 0.81 second. The increased peak duration accompanies decreased peak current, resulting in the optimal charge density of 0.163 nC/cm(2) at the vertical speed of 0.25 cm/s. Changing the air gap capacitance in noncontact mode or the relative permittivity in dielectric layers also results in similar change in peak duration. To explain the tunable current duration, an equivalent circuit model is constructed via serially connected capacitors and numerical solutions reproduce the trends in current duration associated with change in air gap capacitance. This study provides significant implications toward further optimizing triboelectric generators, in terms of optimal triboelectric charge density, accompanying circuit lifetime and broadened applicability.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 원자력공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Sang tae photo

Kim, Sang tae
COLLEGE OF ENGINEERING (DEPARTMENT OF NUCLEAR ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE