Detailed Information

Cited 4 time in webofscience Cited 6 time in scopus
Metadata Downloads

Cuffless Deep Learning-Based Blood Pressure Estimation for Smart Wristwatches

Authors
Song, KwangsubChung, Ku-youngChang, Joon-Hyuk
Issue Date
Jul-2020
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Feature extraction; Electrocardiography; Estimation; Blood pressure; Standards; Intelligent sensors; Blood pressure (BP) estimation; deep learning; electrocardiography (ECG); electronic manometer for home; mercury sphygmomanometer; photoplethysmography (PPG); smart wristwatch
Citation
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, v.69, no.7, pp.4292 - 4302
Indexed
SCIE
SCOPUS
Journal Title
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
Volume
69
Number
7
Start Page
4292
End Page
4302
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/9702
DOI
10.1109/TIM.2019.2947103
ISSN
0018-9456
Abstract
In this article, we propose a cuffless blood pressure (BP) estimation technique based on deep learning for smart wristwatches. Photoplethysmography (PPG) and electrocardiography (ECG) signals are first collected from the sensors installed at a smart wristwatch. Ground-truth systolic BP (SBP) and diastolic BP (DBP) measurements are then obtained by a reference device, a mercury sphygmomanometer. In order to estimate the SBP and DBP, we extract feature vectors and reconstruct them through a feature selection process. Next, we design a two-stage system of stacked deep neural network (DNN)-based SBP and DBP estimation models and compare our results with those obtained using estimation techniques in the previously reported algorithms such as the polynomial regression (PR), support vector machine (SVM), artificial neural network (ANN), and deep belief network (DBN)-DNN. In order to verify the proposed algorithm against the conventional algorithms, we quantitatively compare the results in terms of mean error (ME) with standard deviation, mean absolute error (MAE) with standard deviation, Pearson correlation, box plot, and Bland-Altman plot. For this, 110 subjects contributed to the database (DB), each of which is collected three times for 20 s. The quantitative errors turn out to be lower than that of the existing methods, which shows the superiority of our approach. To enhance the BP estimation performance for each individual user further, we devise the personal adaptation algorithm for the BP estimation algorithm that yields better BP estimates.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 융합전자공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chang, Joon-Hyuk photo

Chang, Joon-Hyuk
COLLEGE OF ENGINEERING (SCHOOL OF ELECTRONIC ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE