Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Towards Network Lifetime Enhancement of Resource Constrained IoT Devices in Heterogeneous Wireless Sensor Networks

Authors
Din, Muhammad Salah UdRehman, Muhammad Atif UrUllah, RehmatPark, Chan-WonKim, Byung Seo
Issue Date
Aug-2020
Publisher
MDPI
Keywords
clustering; energy consumption; MAC; TOPSIS; WSNs; internet of things; network lifetime; load-balancing
Citation
SENSORS, v.20, no.15, pp.1 - 23
Journal Title
SENSORS
Volume
20
Number
15
Start Page
1
End Page
23
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/11618
DOI
10.3390/s20154156
ISSN
1424-8220
Abstract
The participating nodes in Wireless Sensor Networks (WSNs) are usually resource-constrained in terms of energy consumption, storage capacity, computational capability, and communication range. Energy is one of the major constraints which requires an efficient mechanism that takes into account the energy consumption of nodes to prolong the network lifetime. Particularly in the large scale heterogeneous WSNs, this challenge becomes more critical due to high data collection rate and increased number of transmissions. To this end, clustering is one of the most popular mechanisms which is being used to minimize the energy consumption of nodes and prolong the lifetime of the network. In this paper, therefore, we propose a robust clustering mechanism for energy optimization in heterogeneous WSNs. In the proposed scheme, nodes declare themselves as cluster head (CH) based on available resources such as residual energy, available storage and computational capability. The proposed scheme employs the multi criteria decision making technique named as Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) which allows the child nodes to select the optimal CH among several potential CH candidates. Moreover, we also propose mechanisms such as CH-acquaintanceship and CH-friendship in order to prolong the network lifetime. Simulation results show that our proposed scheme minimizes the control overhead, reduces the power consumption and enhances overall lifetime of the network by comparing with the most recent and relevant proposed protocol for WSNs.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Software and Communications Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Byung Seo photo

Kim, Byung Seo
Graduate School (Software and Communications Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE