Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Extremely superb efficiency and lifetime of deep blue phosphorescent OLEDs by introducing a hypsochromic emissive intermolecular complex (HEIC) with a negligibly small Delta E-ST and fast reverse intersystem crossing rate

Authors
Kim, Ki JuHwang, Kyo MinLee, HakjunKang, SunwooKo, Soo-ByungEum, Min-SikKim, Young KwanKim, Taekyung
Issue Date
21-Mar-2021
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY C, v.9, no.11, pp.4029 - 4038
Journal Title
JOURNAL OF MATERIALS CHEMISTRY C
Volume
9
Number
11
Start Page
4029
End Page
4038
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/15569
DOI
10.1039/d0tc06107g
ISSN
2050-7526
Abstract
Extremely superb device performances were realized with 9-(4,6-bis(3-(triphenylsilyl)phenyl)-1,3,5-triazin-2-yl)-9H-carbazole (DSiCzTrz), a newly-synthesized n-type host with high triplet energy. By balancing donor-acceptor characteristics in a single molecule with carbozole and triazine, nearly zero Delta E-ST of 0.006 eV was observed. Interestingly, upon mixing DSiCzTrz with a p-type host, 1,3-bis(N-carbazolyl)benzene (mCP), a hypsocrhomic emissive intermolecular complex (HEIC), which was significantly blue-shifted from electroluminescence with photoluminescence spectra of DsiCzTrz, was observed. The origin of HEIC was comprehensively investigated and it was found that the effective energy gap between mCP and DSiCzTrz was significantly increased by 0.65 eV. The increase of the energy gap in the mixed system was attributed to the fact that the rotational motion of the carbozole unit in DSiCTrz was highly suppressed in the complex matrix, leading to destabilization of molecular orbitals of DsiCzTrz. In the deep blue phosphorescent OLED (PhOLED) with mCP:DSiCzTrz, 25.6% of external quantum efficiency, similar to 115 h of LT50 at 500 cd m(-2) which is 100 times longer than the lifetime of the mCP reference device, and a small roll-off of 25% at 10 mA cm(-2) were simultaneously achieved. Such superb device performances were comprehensively understood in terms of the negligibly small Delta E-ST of 0.03 eV and a fast reverse intersystem crossing rate (k(RISC)) of 1.89 x 10(6) s(-1) in mCP:DSiCzTrz. To the best of our knowledge, this result is the fastest k(RISC) for a mixed host for deep blue PhOLEDs. Thanks to fast k(RISC), triplets were rapidly upconverted into singlets and triplet-polaron quenching was significantly suppressed, consequently leading to high efficiency, long lifetime, and small roll-off simultaneously.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young Kwan photo

Kim, Young Kwan
Engineering (Applied Science)
Read more

Altmetrics

Total Views & Downloads

BROWSE