Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Maximal spreading of droplet during collision on particle: Effects of liquid viscosity and surface curvature

Full metadata record
DC Field Value Language
dc.contributor.authorYoon, Ikroh-
dc.contributor.authorShin, Seungwon-
dc.date.accessioned2021-10-12T08:41:30Z-
dc.date.available2021-10-12T08:41:30Z-
dc.date.created2021-09-30-
dc.date.issued2021-08-
dc.identifier.issn1070-6631-
dc.identifier.urihttps://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/16198-
dc.description.abstractThis study uses the level contour reconstruction method to numerically investigate the maximum spreading due to droplet collision with a dry, stationary, spherical particle. We consider a broad range of impact conditions: Weber number 30-90, Ohnesorge number 0.0013-0.7869, and droplet-to-particle size ratio 1/10-1/2, and quantitatively and systematically analyze 120 collision cases to understand how liquid viscosity and surface curvature affect the maximum spreading. The maximum spreading increases on the smaller particles for both the capillary and viscous regimes, but the underlying physics clearly differ. The increase in maximum spreading is governed mainly by the surface deformation of the rim for the capillary regime and viscous dissipation for the viscous regime. An empirical correlation that can be applied to the droplet impact on both a particle and a flat surface is also presented. The model shows good agreement with existing experimental data as well as our simulation results within a deviation range of +/- 15%. Published under an exclusive license by AIP Publishing.-
dc.language영어-
dc.language.isoen-
dc.publisherAIP Publishing-
dc.subjectDIRECT NUMERICAL-SIMULATION-
dc.subjectCATALYTIC CRACKING REACTOR-
dc.subjectFRONT-TRACKING METHOD-
dc.subjectSPHERICAL-PARTICLE-
dc.subjectMULTIPHASE FLOWS-
dc.subjectIMPACT DYNAMICS-
dc.subjectINJECTION ZONE-
dc.subjectSOLID SPHERE-
dc.subjectMODEL-
dc.subjectDEFORMATION-
dc.titleMaximal spreading of droplet during collision on particle: Effects of liquid viscosity and surface curvature-
dc.typeArticle-
dc.contributor.affiliatedAuthorShin, Seungwon-
dc.identifier.doi10.1063/5.0058816-
dc.identifier.scopusid2-s2.0-85112695369-
dc.identifier.wosid000694934900001-
dc.identifier.bibliographicCitationPHYSICS OF FLUIDS, v.33, no.8-
dc.relation.isPartOfPHYSICS OF FLUIDS-
dc.citation.titlePHYSICS OF FLUIDS-
dc.citation.volume33-
dc.citation.number8-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalWebOfScienceCategoryPhysics, Fluids & Plasmas-
dc.subject.keywordPlusDIRECT NUMERICAL-SIMULATION-
dc.subject.keywordPlusCATALYTIC CRACKING REACTOR-
dc.subject.keywordPlusFRONT-TRACKING METHOD-
dc.subject.keywordPlusSPHERICAL-PARTICLE-
dc.subject.keywordPlusMULTIPHASE FLOWS-
dc.subject.keywordPlusIMPACT DYNAMICS-
dc.subject.keywordPlusINJECTION ZONE-
dc.subject.keywordPlusSOLID SPHERE-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusDEFORMATION-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical and System Design Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shin, Seungwon photo

Shin, Seungwon
Engineering (Mechanical & System Design Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE