Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Understanding bipolar thermal conductivity in terms of concentration ratio of minority to majority carriers

Authors
Kim, H.-S.Lee, K.H.Kim, S.-I.
Issue Date
Sep-2021
Publisher
Elsevier Editora Ltda
Keywords
Band gap; Bipolar thermal conductivity; Carrier concentration; Majority carrier; Minority carrier
Citation
Journal of Materials Research and Technology, v.14, pp.639 - 646
Journal Title
Journal of Materials Research and Technology
Volume
14
Start Page
639
End Page
646
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/16240
DOI
10.1016/j.jmrt.2021.06.087
ISSN
2238-7854
Abstract
Bi2Te3 is a good candidate to be used in thermoelectric generators. For a higher efficiency of the generators, shifting the temperature at which Bi2Te3 performs best to higher temperatures is required. Bipolar thermal conductivity suppression is the most effective approach to improve high-temperature thermoelectric performance. However, characterization of the bipolar thermal conductivity is challenging because it is related to individual contribution to Seebeck coefficient and electrical conductivity from the majority and minority carriers. Two-band model calculations are performed using reported band parameters of n-type Bi2Te3 to estimate the effects of band gap and minority to majority carrier concentration ratio in the bipolar thermal conductivity suppression. Individual Seebeck coefficient, electrical conductivity, and carrier concentrations from the majority and minority carriers are evaluated while varying chemical potential with a different band gap. It was demonstrated that increasing the band gap and chemical potential increased the individual Seebeck coefficient from minority carriers while decreasing the individual electrical conductivity and concentration from minority carriers. As a result, it was shown that the band gap increase and especially the magnitude of the minority to majority carrier concentration ratio decrease was effective in the bipolar thermal conductivity suppression. © 2021 The Authors
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE