Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets

Authors
Sik, Choi M.Young, Kim M.Mirzaei, A.Kim, H.-S.Kim, S.-I.Baek, S.-H.Won, Chun D.Jin, C.Hyoung, Lee K.
Issue Date
1-Dec-2021
Publisher
Elsevier B.V.
Keywords
Gas sensor; NO2 gas; Porous ZnO nanosheet; Sensing mechanism
Citation
Applied Surface Science, v.568
Journal Title
Applied Surface Science
Volume
568
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/16254
DOI
10.1016/j.apsusc.2021.150910
ISSN
0169-4332
Abstract
In this study, we synthesized porous (porosity: ~16%, average pore size: ~60 nm) ZnO nanosheets (thickness: ~80 nm) using a conventional solvothermal method to investigate NO2 gas sensing properties. Porous ZnO nanosheets triggered the detection of NO2 gas with high sensitivity. Responses of 2.93 – 0.5 ppm and 74.68 – 10 ppm NO2 gas at 200 °C were observed in the porous ZnO nanosheet-based gas sensor. In addition, improved sensing properties with high selectivity to NO2 gas, reasonable stability, and high response even in the presence of water vapor molecules were obtained. We found that the enhanced NO2 gas response of the porous ZnO nanosheet-based gas sensor was due to the synergetic effects of the high surface area, ZnO/ZnO homojunctions, and structural defects. We developed a highly sensitive NO2 gas sensor with improved reliability using morphologically engineered ZnO, which was prepared via a simple and scalable chemical-synthesis route. © 2021 Elsevier B.V.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE