Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effect of an Organic Buffer Layer on the Stability of Zinc Oxide Thin-Film Transistors

Authors
Lee, H. W.Hyung, G. W.Koo, J. R.Cho, E. S.Kwon, S. J.Park, J. H.Kim, Young Kwan
Issue Date
Jul-2014
Publisher
AMER SCIENTIFIC PUBLISHERS
Keywords
ZnO Transistor; C-PVA Organic Buffer Layer; Threshold Voltage Shift; Hysteresis
Citation
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, v.14, no.7, pp.5070 - 5074
Journal Title
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
Volume
14
Number
7
Start Page
5070
End Page
5074
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/16660
DOI
10.1166/jnn.2014.8425
ISSN
1533-4880
Abstract
Compared with other materials, zinc oxide (ZnO) exhibits stability in air, high-electron mobility, transparency and low light sensitivity. We investigated these properties in ZnO thin-film transistors (TFTs) containing a cross-linked poly(vinyl alcohol) (C-PVA) (1:3) buffer layer stacked between the semiconductor and gate dielectric. We measured the impact of this C-PVA layer on gate bias stress. We measured the transfer characteristics of the saturation region to determine the threshold voltage and the field-effect mobility of the transistors. We recorded a threshold voltage of 11.53 V in the ZnO TFTs with the C-PVA buffer layer, the field-effect mobility was 0.2 cm(2)/Vs. There was a positive shift in the threshold voltage of Delta V-TH approximate to 10 V in response to the application of a gate bias stress of 20 V. The positive shift in the threshold voltage was lower than that in pristine ZnO TFTs. This finding suggests that the shift in threshold voltage was due to reduced charge trapping at the semiconductor-gate dielectric interface. Our report indicates that the organic buffer layer enhanced the stability of ZnO TFTs.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young Kwan photo

Kim, Young Kwan
Engineering (Applied Science)
Read more

Altmetrics

Total Views & Downloads

BROWSE