Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties

Authors
Kim, W. J.Lee, T. J.Han, S. H.
Issue Date
Apr-2014
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
CARBON, v.69, pp.55 - 65
Journal Title
CARBON
Volume
69
Start Page
55
End Page
65
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/16719
DOI
10.1016/j.carbon.2013.11.058
ISSN
0008-6223
Abstract
The possibility of using multi-layer graphene (MLG) particles as reinforcement for enhancing the mechanical propertied of Cu matrix composites was explored. The combination of ball milling and high-ratio differential speed rolling (HRDSR) techniques was utilized to fabricate the 0.5 and 1 vol.% MLG/Cu composites. In the HRDSR-processed composites, the nanosized MLG particles with 5-15 nm in diameter were dispersed densely and uniformly in the grain interiors of Cu matrix with a preferred crystallographic relationship of < 111 >(cu)//< 0001 >(MLG) to the matrix. The conventionally rolled composites with the same contents of MLG, however, contained much lower densities of nanosized MLG particles. This result indicates that the large shear strain induced during HRDSR accelerated breaking up of MLGs into nanosizes and enhanced their dispersion in the matrix. The strength improvement through the addition of MLGs was obvious when HRDSR was used, but it was negligible when conventional rolling was used. The strengthening gained through the homogeneous dispersion of high-density nanosized MLG particles in the HRDSR-processed composites was attributed to Orowan strengthening. This finding is different from the HRDSR-processed carbon-nanotube (CNT)/Cu composites studied in our previous work, in which the grain-size reduction through the addition of CNTs was the major contribution to the strengthening effect. (C) 2013 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Woo Jin photo

Kim, Woo Jin
Graduate School (Department of Materials Science and Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE