Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Increased Ethanol Resistance in Ethanolic Escherichia coli by Insertion of Heat-shock Genes BEM1 and SOD2 from Saccharomyces cerevisiae

Authors
Lee, Soo JinOh, Eun KyoungOh, Young HoonWon, Jong InHan, Sung OkLee, Jin Won
Issue Date
Sep-2010
Publisher
KOREAN SOC BIOTECHNOLOGY & BIOENGINEERING
Keywords
bioethanol; heat shock genes (SOD2, BEM1); ethanol resistance; Escherichia coli; Saccharomyces cerevisiae
Citation
BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, v.15, no.5, pp.770 - 776
Journal Title
BIOTECHNOLOGY AND BIOPROCESS ENGINEERING
Volume
15
Number
5
Start Page
770
End Page
776
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/20729
DOI
10.1007/s12257-009-3060-x
ISSN
1226-8372
Abstract
Ethanol is generally toxic to microorganisms, and intracellular and extracellular accumulation of ethanol inhibits cell growth and metabolism. In this study, pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) were cloned into pET-32a vector and then introduced into E. coli BL21 to produce ethanol. Heat shock genes (BEM1 and SOD2) from Saccharomyces cerevisiae were inserted into recombinant ethanolic E. coli using pET28_a vector to improve ethanol shock resistance. Three different strains were constructed: Ethanolic E. (adhB and pdc genes inserted using pET32_a vector), BEM1 gene-inserted E. coli (BEM1 inserted using pET_28a), and SOD2-inserted E. coli (SOD2 inserted using pET28_a). Construction of these three different strains allowed comparison of the functions of these heat shock genes as well as their roles in ethanol tolerance. The toxicity of ethanol in recombinant ethanolic E. coli was tested by measuring cell growth in response to various ethanol concentrations. The results show that SOD2-inserted E. coli showed higher ethanol resistance than ethanolic E. coli.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Chemical Engineering Major > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Won, Jong in photo

Won, Jong in
Engineering (Chemical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE