Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Forward dynamics based realistic animation of rigid bodies

Authors
Park, J.Fussell, D.S.
Issue Date
1997
Publisher
Elsevier Ltd
Citation
Computers and Graphics (Pergamon), v.21, no.4, pp.483 - 496
Journal Title
Computers and Graphics (Pergamon)
Volume
21
Number
4
Start Page
483
End Page
496
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/27776
DOI
10.1016/S0097-8493(97)00024-1
ISSN
0097-8493
Abstract
This paper presents a new methodology for model and control of the motion of an (articulated) rigid body for the purposes of animation. The technique uses a parameter optimization method for forward dynamic simulation to obtain a good set of values for the control variables of the system. We model articulated rigid bodies using a moderate number of control nodes, and we linearly interpolate control values between adjacent pairs of these nodes. The interpolated control values are used to determine the forces/torques for the body actuators. We can control total motion duration time, and the control is more flexible than in any other dynamics based animation techniques. We employ a parameter optimization (or nonlinear programming) method to find a good set of values for the control nodes. We extend this method by using a musculotendon skeletal model for the human body instead of the more commonly used robot model to provide more accurate human motion simulations. Skeletal and musculotendon dynamics enable us to do the human body animation more accurately than ever because the muscle force depends on the geometry of a human as well as on differential kinematic parameters. We show various levels of motion control for forward dynamics animation: ranging from piecewise linear forces/torques control for joints to muscle activation signal control for muscles to generate highly nonlinear forces/torques. This spectrum of control levels provides various nonlinear resulting motions to animators to allow them to achieve effective motion control and physically realistic motion simultaneously. Because our algorithms are heavily dependent on parameter optimization, and since the optimization technique may have difficulty finding a global optimum, we provide a modified optimization method along with various techniques to reduce the search space size. Our parameter optimization based forward dynamic animation and musculotendon dynamics based animation present the first use of such techniques in animation research to date. © 1997 Elsevier Science Ltd.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Ji hun photo

Park, Ji hun
Engineering (Department of Computer Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE