Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A New Approach to Machine Learning Model Development for Prediction of Concrete Fatigue Life under Uniaxial Compressionopen access

Authors
Son, JaehoYang, Sungchul
Issue Date
1-Oct-2022
Publisher
MDPI
Keywords
fatigue; machine learning; stress level; frequency; compressive strength; specimen shape; outliers; correlation
Citation
APPLIED SCIENCES-BASEL, v.12, no.19
Journal Title
APPLIED SCIENCES-BASEL
Volume
12
Number
19
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/30495
DOI
10.3390/app12199766
ISSN
2076-3417
Abstract
The goal of this work is to show how machine learning models, such as the random forest, neural network, gradient boosting, and AdaBoost models, can be used to forecast the fatigue life (N) of plain concrete under uniaxial compression. Here, we developed our final machine learning model by generating the following three data files from the original data used in the work of Zhang et al.: (a) grouped data with the same input variable value and different output variable logN value, (b) data excluding outliers selected by three or more outlier detection methods; (c) average data excluding outliers, created by averaging the grouped data after excluding outliers from among the grouped data. Excluding the sustained strength of the concrete variable, originally treated as the seventh input variable in the work of Zhang et al., resulted in improving the determination coefficient (R-2) values. Moreover, the gradient boosting model showed a high R-2 value at 0.753, indicating a high accuracy in predicting outcomes. Further analysis using data excluding outliers shows that the R-2 value increased to 0.803. Moreover, the average data excluding outliers provided the best R-2 value at 0.915. Finally, a permutation feature importance (PFI) analysis was carried out to determine the strength of the relationship between the feature and the target value for the gradient boosting model. The analysis results showed that the maximum stress level (S-max) and loading frequency (f) were the most significant input variables, followed by compressive strength (f '(c)) and maximum to minimum stress ratio (R). Shape and height to width ratio (h/w) were the features with a non-significant influence on the model. This trend was previously confirmed by a Pearson and Spearman correlation analysis.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science and Technology > Major in Architecture Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Son, Jae ho photo

Son, Jae ho
Science & Technology (Architectural Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE