Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Maximum spreading of droplet-particle collision covering a low Weber number regime and data-driven prediction model

Full metadata record
DC Field Value Language
dc.contributor.authorYoon, I.-
dc.contributor.authorChergui, J.-
dc.contributor.authorJuric, D.-
dc.contributor.authorShin, S.-
dc.date.accessioned2022-11-07T03:40:10Z-
dc.date.available2022-11-07T03:40:10Z-
dc.date.created2022-11-07-
dc.date.issued2022-10-01-
dc.identifier.issn1070-6631-
dc.identifier.urihttps://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/30523-
dc.description.abstractIn the present study, the maximum spreading diameter of a droplet impacting with a spherical particle is numerically studied for a wide range of impact conditions: Weber number (We) 0-110, Ohnesorge number (Oh) 0.001 3-0.786 9, equilibrium contact angle (θeqi) 20°-160°, and droplet-To-particle size ratio (ω) 1/10-1/2. A total of 2600 collision cases are simulated to enable a systematic analysis and prepare a large dataset for the training of a data-driven prediction model. The effects of four impact parameters (We, Oh, θeqi, and ω) on the maximum spreading diameter (β*max) are comprehensively analyzed, and particular attention is paid to the difference of β*max between the low and high Weber number regimes. A universal model for the prediction of β*max, as a function of We, Oh, θeqi, and ω, is also proposed based on a deep neural network. It is shown that our data-driven model can predict the maximum spreading diameter well, showing an excellent agreement with the existing experimental results as well as our simulation dataset within a deviation range of ±10%. © 2022 Author(s).-
dc.language영어-
dc.language.isoen-
dc.publisherAmerican Institute of Physics Inc.-
dc.titleMaximum spreading of droplet-particle collision covering a low Weber number regime and data-driven prediction model-
dc.typeArticle-
dc.contributor.affiliatedAuthorShin, S.-
dc.identifier.doi10.1063/5.0117839-
dc.identifier.scopusid2-s2.0-85140879371-
dc.identifier.wosid000875616100001-
dc.identifier.bibliographicCitationPhysics of Fluids, v.34, no.10-
dc.relation.isPartOfPhysics of Fluids-
dc.citation.titlePhysics of Fluids-
dc.citation.volume34-
dc.citation.number10-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalWebOfScienceCategoryPhysics, Fluids & Plasmas-
dc.subject.keywordPlusCATALYTIC CRACKING REACTOR-
dc.subject.keywordPlusFRONT-TRACKING-
dc.subject.keywordPlusWETTING CHARACTERISTICS-
dc.subject.keywordPlusDIRECT SIMULATION-
dc.subject.keywordPlusMULTIPHASE FLOWS-
dc.subject.keywordPlusINJECTION ZONE-
dc.subject.keywordPlusIMPACT-
dc.subject.keywordPlusFLUID-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusTIME-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical and System Design Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shin, Seungwon photo

Shin, Seungwon
Engineering (Mechanical & System Design Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE