Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The transition to aeration in turbulent two-phase mixing in stirred vessels

Full metadata record
DC Field Value Language
dc.contributor.authorKahouadji, L.-
dc.contributor.authorLiang, F.-
dc.contributor.authorValdes, J.P.-
dc.contributor.authorShin, S.-
dc.contributor.authorChergui, J.-
dc.contributor.authorJuric, D.-
dc.contributor.authorCraster, R.V.-
dc.contributor.authorMatar, O.K.-
dc.date.accessioned2022-11-29T02:40:12Z-
dc.date.available2022-11-29T02:40:12Z-
dc.date.created2022-11-29-
dc.date.issued2022-10-21-
dc.identifier.issn2633-4259-
dc.identifier.urihttps://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/30598-
dc.description.abstractWe consider the mixing dynamics of an air-liquid system driven by the rotation of a pitched blade turbine (PBT) inside an open, cylindrical tank. To examine the flow and interfacial dynamics, we use a highly parallelised implementation of a hybrid front-tracking/level-set method that employs a domain-decomposition parallelisation strategy. Our numerical technique is designed to capture faithfully complex interfacial deformation, and changes of topology, including interface rupture and dispersed phase coalescence. As shown via transient, a three-dimensional (3-D) LES (large eddy simulation) using a Smagorinsky-Lilly turbulence model, the impeller induces the formation of primary vortices that arise in many idealised rotating flows as well as several secondary vortical structures resembling Kelvin-Helmholtz, vortex breakdown, blade tip vortices and end-wall corner vortices. As the rotation rate increases, a transition to 'aeration' is observed when the interface reaches the rotating blades leading to the entrainment of air bubbles into the viscous fluid and the creation of a bubbly, rotating, free surface flow. The mechanisms underlying the aeration transition are probed as are the routes leading to it, which are shown to exhibit a strong dependence on flow history. ©-
dc.language영어-
dc.language.isoen-
dc.publisherCambridge University Press-
dc.titleThe transition to aeration in turbulent two-phase mixing in stirred vessels-
dc.typeArticle-
dc.contributor.affiliatedAuthorShin, S.-
dc.identifier.doi10.1017/flo.2022.24-
dc.identifier.scopusid2-s2.0-85142131485-
dc.identifier.wosid001037299700001-
dc.identifier.bibliographicCitationFlow, v.2-
dc.relation.isPartOfFlow-
dc.citation.titleFlow-
dc.citation.volume2-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalWebOfScienceCategoryPhysics, Fluids & Plasmas-
dc.subject.keywordPlusNUMERICAL-SIMULATION-
dc.subject.keywordPlusVORTEX BREAKDOWN-
dc.subject.keywordPlusFLOW-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusTRACKING-
dc.subject.keywordPlusFLUID-
dc.subject.keywordAuthorAeration-
dc.subject.keywordAuthorFast-moving consumer goods-
dc.subject.keywordAuthorMultiphase mixing-
dc.subject.keywordAuthorStirred vessels-
dc.subject.keywordAuthorTurbulence-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical and System Design Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shin, Seungwon photo

Shin, Seungwon
Engineering (Mechanical & System Design Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE