Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Molecular dynamics simulation of free transverse vibration behavior of single-walled coiled carbon nanotubes

Authors
Darvishi, F.Rahmani, O.Ostadrahimi, A.Choi, E.Li, G.
Issue Date
1-Jan-2023
Publisher
Taylor and Francis Ltd.
Keywords
Beating phenomenon; coiled carbon nanotubes (CCNTs); molecular dynamics (MD) simulations; transverse vibration
Citation
Mechanics of Advanced Materials and Structures
Journal Title
Mechanics of Advanced Materials and Structures
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/31198
DOI
10.1080/15376494.2023.2211069
ISSN
1537-6494
Abstract
Coiled carbon nanotubes (CCNTs) belong to one of the prominent classes of carbon nanostructures with unique mechanical properties and vibrational behavior due to their helical geometries. In this paper, the free transverse vibration behavior of single-walled CCNTs is investigated by molecular dynamics (MD) simulations and the adaptive intermolecular reactive empirical bond-order (AIREBO) potential under different boundary conditions (B.Cs.). The beating phenomenon is observed in CCNTs due to the presence of longitudinal, transverse, and torsional coupled vibrations and the proximity of their corresponding frequency. Generally, the frequency of the CCNTs decreases by increasing the length ((Formula presented.)) or the number of pitches ((Formula presented.) Moreover, the pitch angle (Formula presented.) plays a more decisive role compared to other geometric parameters. At constant length ((Formula presented.)) of CCNTs, the frequency increases by enhancing the pitch angle (Formula presented.) Furthermore, the fundamental frequency range of the studied CCNTs is obtained less than 331.9 GHz for lengths greater than 2 nm under different boundary conditions. This indicates that CCNTs have a higher vibration sensitivity than straight CNTs. Therefore, CCNTs can be a proper alternative to straight CNTs in sensors. The results of this study can be used in the design and analysis of nanoelectromechanical systems (NEMs) with CCNTs elements as well as to calibrate continuum mechanics methods. © 2023 Taylor & Francis Group, LLC.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Civil and Environmental Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Eun soo photo

Choi, Eun soo
Engineering (Civil and Environmental Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE