Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

SWIPT-Enabled Cooperative Wireless IoT Networks with Friendly Jammer and Eavesdropper: Outage and Intercept Probability Analysisopen access

Authors
Vo, Dinh TungVan Chien, TrinhNguyen, Tan N.Tran, Dinh-HieuVoznak, MiroslavKim, Byung SeoTu, Lam Thanh
Issue Date
2023
Publisher
Institute of Electrical and Electronics Engineers Inc.
Keywords
Cooperative relay; Cooperative systems; eavesdropper; friendly jammer; Internet of Things; IoT; IP networks; Jamming; physical layer security; Physical layer security; Relays; Security; Simultaneous wireless information and power transfer; SWIPT; Wireless communication
Citation
IEEE Access, v.11, pp.1 - 1
Journal Title
IEEE Access
Volume
11
Start Page
1
End Page
1
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/31591
DOI
10.1109/ACCESS.2023.3303369
ISSN
2169-3536
Abstract
Physical layer security (PLS) and simultaneous wireless information and power transfer (SWIPT) in cooperative relaying have gained great interest as technologies for security and energy enhancement in Internet-of-Things (IoT) networks. In this work, we investigate PLS for a SWIPT- and AF-enabled cooperative wireless IoT system, consisting of one source, multiple energy harvesting (EH) relays, and one destination, in the presence of an eavesdropper that tries to overhear the confidential information. Furthermore, an EH-friendly jammer is deployed to transmit jamming signals aimed at the eavesdropper to improve the security system. In this context, a low-complexity, sub-optimal, but efficient relay selection method is proposed. More specifically, the relay is selected to convey information such that it has the best channel to the source. Based on the proposed system model, the performance analysis of the intercept probability (IP), asymptotic IP, and non-zero secrecy probability (NZSP) is analyzed by considering the time switching (TS)-based relaying strategy. Particularly, the exact closed-form expression of IP is achieved by applying modified Bessel function expansion. Monte-Carlo simulations are employed to corroborate the correctness and efficiency of our mathematical analysis. The time splitting factor α makes variations on the IP of about 3× as α ∈ [0.1, 0.8]. However, a dramatic reduction of the IP up to 317× is observed as α increases from 0.8 to 0.9. Author
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Software and Communications Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Byung Seo photo

Kim, Byung Seo
Graduate School (Software and Communications Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE