Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Charge Transport Advancement in Anti-Ambipolar Transistors: Spatially Separating Layer Sandwiched between N-Type Metal Oxides and P-Type Small Molecules

Full metadata record
DC Field Value Language
dc.contributor.authorHan, Youngmin-
dc.contributor.authorLee, Subin-
dc.contributor.authorKim, Minseo-
dc.contributor.authorShin, Wonjun-
dc.contributor.authorLee, Ho kyung-
dc.contributor.authorKoo, Ryun-Han-
dc.contributor.authorLee, Sung-Tae-
dc.contributor.authorKim, Chang-Hyun-
dc.contributor.authorYoo, Hocheon-
dc.date.accessioned2024-03-11T06:32:01Z-
dc.date.available2024-03-11T06:32:01Z-
dc.date.issued2024-02-22-
dc.identifier.issn1616-301X-
dc.identifier.issn1616-3028-
dc.identifier.urihttps://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/32743-
dc.description.abstractInterface issues with organic semiconductors on metal oxide challenge realizing a high-performance anti-ambipolar transistor (AAT) with stable operation. The motivation behind this research delves into the intricate landscape of AATs, elucidating their envisioned applications and constituent materials. Central to the authors, discourse is the pivotal role that fluoropolymers assume, acting as a bridge uniting n-type metal oxide semiconductors (n-oxide) with p-type organic semiconductors (p-organic), thereby unveiling a hitherto concealed facet of transistor advancement. Adopting a spatially separating layer (SSL) between p- and n-type semiconductors of AAT is unconventional, but this p-organic/SSL/n-oxide junction (pSn) AAT exhibits stable operation also 215 days after fabrication and minimal hysteresis, which is 13.67 times smaller than a conventional p-organic/n-oxide junction (pn) AAT. The effect of SSL is closely studied through comparisons of the performance of single-type transistors, trap density, and carrier behavior, which define the order of 1/f at low-frequency noise analysis. In addition, the contribution of SSL is confirmed via the channel formation mechanism of AAT investigated through a two-dimensional (2D) finite-element simulation. The operation stability of pSn AAT is evaluated through combined stress tests, long-term stability tests, and transient response tests. This research proposes SSL as a new design parameter to improve the AAT. By adopting a spatially separating layer (SSL) between p- and n-type semiconductors, this p-organic/SSL/n-oxide junction (pSn) antiambipolar transistor (AAT) exhibits stable operation and minimal hysteresis than a conventional p-organic/n-oxide junction AAT. This research proposes SSL as a new design parameter to improve the AAT. image-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleCharge Transport Advancement in Anti-Ambipolar Transistors: Spatially Separating Layer Sandwiched between N-Type Metal Oxides and P-Type Small Molecules-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1002/adfm.202316217-
dc.identifier.scopusid2-s2.0-85185453449-
dc.identifier.wosid001169512800001-
dc.identifier.bibliographicCitationADVANCED FUNCTIONAL MATERIALS, v.34, no.26-
dc.citation.titleADVANCED FUNCTIONAL MATERIALS-
dc.citation.volume34-
dc.citation.number26-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusFIELD-EFFECT TRANSISTORS-
dc.subject.keywordPlusLOW-FREQUENCY NOISE-
dc.subject.keywordAuthor2D finite-element simulation-
dc.subject.keywordAuthoranti-ambipolarity-
dc.subject.keywordAuthorGaussian transistors-
dc.subject.keywordAuthorhybrid materials-
dc.subject.keywordAuthorlow-frequency noise-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electronic & Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sung-Tae photo

Lee, Sung-Tae
Engineering (Electronic & Electrical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE