Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Analysis of a Delay-Tolerant Data Harvest Architecture Leveraging Low Earth Orbit Satellite Networks

Authors
Choi, Chang-Sik
Issue Date
May-2024
Publisher
Institute of Electrical and Electronics Engineers Inc.
Keywords
Analytical models; Cox point processes; delay distribution; delay tolerant networks; Delays; Geometry; harvesting capacity; LEO satellite networks; Low earth orbit satellites; Orbits; Satellites; stochastic geometry; Stochastic processes
Citation
IEEE Journal on Selected Areas in Communications, v.42, no.5, pp 1 - 1
Pages
1
Journal Title
IEEE Journal on Selected Areas in Communications
Volume
42
Number
5
Start Page
1
End Page
1
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/32750
DOI
10.1109/JSAC.2024.3365871
ISSN
0733-8716
1558-0008
Abstract
Reaching all regions of Earth, low Earth orbit (LEO) satellites can harvest delay-tolerant data from remotely located users on Earth without ground infrastructure. This work aims to assess a data harvest network architecture where users generate data and LEO satellites harvest data from users when passing by. By developing a novel stochastic geometry Cox point process model that simultaneously generates orbits and the motion of LEO satellite harvesters on them, we analyze key performance indices of such a network by deriving the following: (i) the average fraction of time that the typical user is served by LEO satellite harvesters, (ii) the average amount of data uploaded per each satellite pass, (iii) the maximum harvesting capacity of the proposed network model, and (iv) the delay distribution in the proposed network. These key metrics are given as functions of key network variables such as λ the mean number of orbits and μ the mean number of satellites per orbit. Providing rich comprehensive analytical results and practical interpretations of these results, this work assesses the potential of the delay-tolerant use of LEO satellites and also serves as a versatile framework to analyze, design, and optimize delay-tolerant LEO satellite networks. IEEE
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Chang sik photo

Choi, Chang sik
Engineering (Electronic & Electrical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE