Detailed Information

Cited 12 time in webofscience Cited 12 time in scopus
Metadata Downloads

Nickel Nanofoam/Different Phases of Ordered Mesoporous Carbon Composite Electrodes for Superior Capacitive Energy Storage

Authors
Lee, KangsukSong, HaeniLee, Kwang HoonChoi, Soo HyungJang, Jong HyunChar, KookheonSon, Jeong Gon
Issue Date
Aug-2016
Publisher
American Chemical Society
Keywords
ordered mesoporous carbon; block copolymer self-assembly; nickel nanofoam; supercapacitor; electric double-layer capacitance
Citation
ACS Applied Materials and Interfaces, v.8, no.34, pp.22516 - 22525
Journal Title
ACS Applied Materials and Interfaces
Volume
8
Number
34
Start Page
22516
End Page
22525
URI
https://scholarworks.bwise.kr/hongik/handle/2020.sw.hongik/7445
DOI
10.1021/acsami.6b06611
ISSN
1944-8244
Abstract
Electrochemical energy storage devices based on electric double layer capacitors (EDLCs) have received considerable attention due to their high power density and potential for obtaining improved energy density in comparison to the lithium ion battery. Ordered mesoporous carbon (OMC) is a promising candidate for use as an EDLC electrode because it has a high specific surface area (SSA), providing a wider charge storage space and size-controllable mesopore structure with a long-range order, suppling high accessibility to the electrolyte ions. However, OMCs fabricated using conventional methods have several drawbacks including low electronic conductivity and long ionic diffusion paths in mesopores. We used nickel nanofoam, which has a relatively small pore (sub-100 nm to sub mu m)network structure, as a current collector. This provides a significantly shortened electronic/ionic current paths and plentiful surface area, enabling stable and close attachment of OMCs without the use of binders. Thus, we present hierarchical binder-free electrode structures based on OMC/Ni nanofoams. These structures give rise to enhanced specific capacitance and a superior rate capability. We also investigated the mesopore structural effect of OMCs on electrolyte transport by comparing the capacitive performances of collapsed lamellar, cylindrical, and spherical mesopore electrodes. The highly ordered and straightly aligned cylindrical OMCs exhibited the highest specific capacitance and the best rate capability.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Chemical Engineering Major > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Soo Hyung photo

Choi, Soo Hyung
Engineering (Chemical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE