Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultrasound-assisted soil washing processes using organic solvents for the remediation of PCBs-contaminated soils

Authors
Lee, DukyoungSon, Younggyu
Issue Date
Dec-2021
Publisher
ELSEVIER
Keywords
Polychlorinated biphenyls; Cavitation; Soil washing; Methanol; n-Hexane
Citation
ULTRASONICS SONOCHEMISTRY, v.80
Journal Title
ULTRASONICS SONOCHEMISTRY
Volume
80
URI
https://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/21077
DOI
10.1016/j.ultsonch.2021.105825
ISSN
1350-4177
Abstract
Ultrasonic soil washing processes using organic solvents were investigated for the development of novel remediation technologies for persistent organic pollutants (POPs)- contaminated soils. Aluminum foil erosion was first tested to understand sonophysical activity in water, methanol (polar) and n-hexane (nonpolar) in a 28 kHz double-bath-type sonoreactor. Significant sonophysical damage on the aluminum foil was observed at the antinodes for all solvents, and the order of degree of sonophysical damage was as follows: water > methanol > n-hexane. Subsequently, conventional (mechanical mixing only) and ultrasonic soil washing (mechanical mixing and ultrasound) techniques were compared for the removal of polychlorinated biphenyls (PCBs) from soil. Two types of contaminated soils, fresh (Soil A, C-0 = 2.5 mg/kg) and weathered (Soil B, C-0 = 0.5 mg/kg), were used and the applied soil-to-liquid (S:L) ratio was 1:5 and 1:10 for methanol and n-hexane, respectively. The polar solvent significantly increased washing efficiencies compared to the nonpolar solvent, despite the nonpolar nature of the PCBs. Washing efficiency was significantly enhanced in ultrasonic soil washing compared to conventional washing, owing to macro- and micro-scale sonophysical actions. The highest washing efficiencies of 90% for Soil A and 70% for Soil B were observed in the ultrasonic washing processes using methanol. Additionally, a single operation of the ultrasonic washing process was superior to two sequential processes with conventional mixing in terms of washing efficiency, consumption of washing agents, treatment of washing leachate, and operation time. Finally, the removal of PCBs in an organic solvent (methanol) was investigated in photolytic and sonolytic processes for the post-treatment of soil washing leachate. A photolysis efficiency of 80% was obtained within 60 min of UV exposure for intensities of 1.0, 2.0, and 4.0 W/cm(2). The primary mechanism of PCBs degradation is photolytic dechlorination. In contrast, no degradation was detected in the sonolytic process, as the excess organic solvent acted as a strong radical scavenger.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Department of Environmental Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Son, Younggyu photo

Son, Younggyu
College of Engineering (Department of Environmental Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE