Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Transient Shock Formation of Pulsed Electrothermal Plasma Discharge Confined in an Extended Bore

Authors
Kim, KyoungjinKwak, Ho SangPark, Joong-Youn
Issue Date
2010
Publisher
JAPAN SOC MECHANICAL ENGINEERS
Keywords
Electrothermal Gun; Pulsed Plasma Discharge; Underexpanded Supersonic Jet; Shock Formation
Citation
JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, v.5, no.1, pp 75 - 86
Pages
12
Journal Title
JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY
Volume
5
Number
1
Start Page
75
End Page
86
URI
https://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/23870
DOI
10.1299/jtst.5.75
ISSN
1880-5566
Abstract
An electrothermal gun possesses a great potential to be an efficient source of pulsed plasma discharge for nanomaterials production or thermal plasma spray coatings. A plasma discharge by intense pulsed power is numerically studied utilizing time-dependent gas dynamics equations which are solved by FCT (flux-corrected transport) algorithm in two-dimensional domain of the interior capillary bore region and the external region of extended bore. Plasma conditions at the bore exit, mass ablation of polycarbonate bore wall, and degree of ionization are determined at different levels of transient arc current profile. As a way to controlling the plasma discharge, the extended bore at the capillary exit is considered and the flow pattern of pulsed plasma discharge in the extended bore exhibit complex shock structure from slightly to highly underexpanded jet depending on the level of arc current profiles. Flow instability of oscillating Mach disk is found at higher level of arc current profile cases.
Files in This Item
There are no files associated with this item.
Appears in
Collections
School of Mechanical System Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE