Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

An Efficient Rescue System with Online Multi-Agent SLAM Framework

Authors
Lee, SeungHwanKim, HanJunLee, BeomHee
Issue Date
Jan-2020
Publisher
MDPI
Keywords
SLAM; truncated signed distance; multi-agent SLAM; map merging; rescue system
Citation
SENSORS, v.20, no.1
Journal Title
SENSORS
Volume
20
Number
1
URI
https://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/25985
DOI
10.3390/s20010235
ISSN
1424-8220
1424-8220
Abstract
A novel and an efficient rescue system with a multi-agent simultaneous localization and mapping (SLAM) framework is proposed to reduce the rescue time while rescuing the people trapped inside a burning building. In this study, the truncated signed distance (TSD) based SLAM algorithm is employed to accurately construct a two-dimensional map of the surroundings. For a new and significantly different scenario, information is gathered and the general iterative closest point method (GICP) is directly employed instead of the conventional TSD-SLAM process. Rescuers can utilize a total map created by merging individual maps, allowing them to efficiently search for victims. For online map merging, it is essential to determine the timing of when the individual maps are merged and the extent to which one map reflects the other map, via the weights. In the several experiments conducted, a light-detection and ranging system and an inertial measurement unit were integrated into a smart helmet for rescuers. The results indicated that the map was built more accurately than that obtained using the conventional TSD-SLAM. Additionally, the merged map was built more correctly by determining proper parameters for online map merging. Consequently, the accurate merged map allows rescuers to search for victims efficiently.
Files in This Item
There are no files associated with this item.
Appears in
Collections
School of Electronic Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE