Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effective excitons separation in starfish Bi2S3/TiO2 nanostructures for enhanced hydrogen production

Authors
NavakoteswaraRao, V.Shankar, M. V.Yang, B. L.Ahn, C. W.Yang, J. M.
Issue Date
Dec-2022
Publisher
ELSEVIER SCI LTD
Keywords
Photocatalysis; Electrocatalysis; Sacrificial agent; Heterojunction; Turn-over frequency; Starfish morphology
Citation
MATERIALS TODAY CHEMISTRY, v.26
Journal Title
MATERIALS TODAY CHEMISTRY
Volume
26
URI
https://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/26192
DOI
10.1016/j.mtchem.2022.101096
ISSN
2468-5194
Abstract
Water Splitting into gaseous hydrogen and oxygen through photocatalytic and electrocatalytic methods are notable alternative energy resources as it operates under ambient temperature/pressure that showed enormous potential to meet the clean energy demands. Hierarchical decoration of nano-size TiO2 on Bi2S3 (Bi2S3@TiO2) having starfish morphology with a varied amount of TiO2 are synthesized by one-pot hydrothermal method both semiconducting and catalytic properties of pristine and Bi2S3@TiO2 hierar-chical nanostructures are thoroughly characterized and discussed by using structural, optical, morpho-logical, electronic, surface and bulk elemental composition analysis. Heterojunction formed between Bi2S3 and TiO2 promotes suppression of photo charge carrier recombination and facilitated fast trans-portation of charge carriers in turn promoted oxidation and reduction reactions at catalytic active sites. The optimized photocatalyst Bi2S3@TiO2 displayed a large surface area of 38.6 m2 g-1 and plenty of catalytic active sites facilitated a high turn-over frequency of 0.085 cm-1. Further, the optimal experi-mental conditions, a high rate of H2 evolution of 44.1 mmol h-1 g-1cat under UV-visible light to the hydrogen conversion efficiency was calculated as 21.7%. Consequently, the electrochemical measure-ments of the Bi2S3@TiO2 a significantly HER overpotential of 222/332 mV to achieve a current density of 20/50 mA cm-2. As a result, enhanced efficiency of Bi2S3@TiO2/NF is demonstrated for H2 evolution in an alkaline medium. The overall water splitting performance is attributed to available plenty of catalytic active sites. Thus, the prepared composite showed enhanced stability for prolonged usage for 50 h of light irradiation. These results will open up opportunities to develop low-cost and earth-abundant efficient electrode materials for multi-functional applications.(c) 2022 Elsevier Ltd. All rights reserved.
Files in This Item
Appears in
Collections
Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE