Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Domain and Histopathology Adaptations-Based Classification for Malignancy Grading System

Authors
Mudeng, VickyFarid, Mifta NurAyana, GelanChoe, Se-woon
Issue Date
Dec-2023
Publisher
ELSEVIER SCIENCE INC
Citation
AMERICAN JOURNAL OF PATHOLOGY, v.193, no.12, pp 2080 - 2098
Pages
19
Journal Title
AMERICAN JOURNAL OF PATHOLOGY
Volume
193
Number
12
Start Page
2080
End Page
2098
URI
https://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/26474
DOI
10.1016/j.ajpath.2023.07.007
ISSN
0002-9440
1525-2191
Abstract
Accurate proliferation rate quantification can be used to devise an appropriate treatment for breast cancer. Pathologists use breast tissue biopsy glass slides stained with hematoxylin and eosin to obtain grading information. However, this manual evaluation may lead to high costs and be ineffective because diagnosis depends on the facility and the pathologists' insights and experiences. Convolutional neural network acts as a computer-based observer to improve clinicians' capacity in grading breast cancer. Therefore, this study proposes a novel scheme for automatic breast cancer malignancy grading from invasive ductal carcinoma. The proposed classifiers implement multistage transfer learning incorporating domain and histopathologic transformations. Domain adaptation using pretrained models, such as InceptionResNetV2, InceptionV3, NASNet-Large, ResNet50, ResNet101, VGG19, and Xception, was applied to classify the x40 magnification BreaKHis data set into eight classes. Subse-quently, InceptionV3 and Xception, which contain the domain and histopathology pretrained weights, were determined to be the best for this study and used to categorize the Databiox database into grades 1, 2, or 3. To provide a comprehensive report, this study offered a patchless automated grading system for magnification-dependent and magnification-independent classifications. With an overall accuracy (means + SD) of 90.17% + 3.08% to 97.67% + 1.09% and an F1 score of 0.9013 to 0.9760 for magnification-dependent classification, the classifiers in this work achieved outstanding performance. The proposed approach could be used for breast cancer grading systems in clinical settings.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Department of Medical IT Convergence Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choe, Se-woon photo

Choe, Se-woon
College of Engineering (Department of Medical IT Convergence Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE