Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Cellulose graphitic carbon directed iron oxide interfaced polypyrrole electrode materials for high performance supercapacitors

Authors
Palem, Ramasubba ReddyDevendrachari, Mruthyunjayachari ChattanahalliShimoga, GaneshBathula, ChinnaLee, Soo-HongKumar, Nadavala SivaAl-Fatesh, Ahmed S.Kim, Dae-YoungHwang, KyojungChoi, Dong-SooKim, Sang-Youn
Issue Date
Dec-2023
Publisher
ELSEVIER
Keywords
Cellulose graphitic carbon; alpha-Fe 2 O (3); PPy; Electrochemical properties; Cyclic stability
Citation
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, v.253
Journal Title
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume
253
URI
https://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/26490
DOI
10.1016/j.ijbiomac.2023.127154
ISSN
0141-8130
1879-0003
Abstract
The rising demand for green and clean energy urges the enlargement of economical and proficient electrode materials for supercapacitors. Herein, we designed a novel electrode material by porous cellulose graphitic carbon (CC) derived from bio-waste cornhusk via the pyrolysis route, and alpha-Fe2O3 decorated nanostructure with CC (CCIO) was achieved in situ pyrolysis of corn-husk and Fe(NO3)(3)<middle dot>9H(2)O metal salt followed by a coating of polypyrrole (CCIOP). The CC, CCIO, and CCIOP nanocomposite electrodes were characterized by XRD, Raman, FTIR, FE-SEM/EDX, FE-TEM, XPS, and BET analysis. The CCIOP nanocomposite electrode exhibits an enhanced specific capacitance (Csp) of 290.9 F/g, which is substantial to its pristine CC (128.3 F/g), PPy (140.3 F/g), and CCIO (190.7 F/g). The Csp of CCIOP in a three-electrode system, using 1 M Na2SO4 electrolyte exhibits excellent capacity retention of 79.1 % even at a high current density of 10 A/g. The as-fabricated asymmetric supercapacitor (ASC) delivered a remarkable capacity retention of 88.7 % with a coulombic efficiency of 98.8 % even after 3000 cycles. The study shows successful utilization of cellulose from bio-waste cornhusk into a substantial template applicable in future alternative energy storage devices.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Department of Computer Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Dong-Soo photo

Choi, Dong-Soo
College of Engineering (Department of Computer Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE