Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Extruder Machine Gear Fault Detection Using Autoencoder LSTM via Sensor Fusion Approachopen access

Authors
Lee, Joon-HyukOkwuosa, Chibuzo NwabufoHur, Jang-Wook
Issue Date
Dec-2023
Publisher
MDPI
Keywords
anomaly detection; autoencoder; long short-term memory; deep learning; discrete wavelet transform; feature extraction; outlier detection
Citation
INVENTIONS, v.8, no.6
Journal Title
INVENTIONS
Volume
8
Number
6
URI
https://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/26528
DOI
10.3390/inventions8060140
ISSN
2411-5134
2411-5134
Abstract
In industrial settings, gears play a crucial role by assisting various machinery functions such as speed control, torque manipulation, and altering motion direction. The malfunction or failure of these gear components can have serious repercussions, resulting in production halts and financial losses. To address this need, research efforts have focused on early defect detection in gears in order to reduce the impact of possible failures. This study focused on analyzing vibration and thermal datasets from two extruder machine gearboxes using an autoencoder Long Short-Term Memory (AE-LSTM) model, to ensure that all important characteristics of the system are utilized. Fast independent component analysis (FastICA) is employed to fuse the data signals from both sensors while retaining their characteristics. The major goal is to implement an outlier detection approach to detect and classify defects. The results of this study highlighted the extraordinary performance of the AE-LSTM model, which achieved an impressive accuracy rate of 94.42% in recognizing malfunctioning gearboxes within the extruder machine system. The study used robust global metric evaluation techniques, such as accuracy, F1-score, and confusion metrics, to thoroughly evaluate the model's dependability and efficiency. LSTM was additionally employed for anomaly detection to further emphasize the adaptability and interoperability of the methodology. This modification yielded a remarkable accuracy of 89.67%, offering additional validation of the model's reliability and competence.
Files in This Item
There are no files associated with this item.
Appears in
Collections
School of Mechanical System Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hur, Jang Wook photo

Hur, Jang Wook
College of Engineering (School of Mechanical System Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE