Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Sum-Rate Maximization for UAV-Assisted Visible Light Communications Using NOMA: Swarm Intelligence Meets Machine Learning

Authors
Quoc-Viet PhamThien Huynh-TheAlazab, MamounZhao, JunHwang, Won-Joo
Issue Date
Oct-2020
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
NOMA; Resource management; 5G mobile communication; Optimization; Light emitting diodes; Particle swarm optimization; Wireless communication; Artificial neural network (ANN); Harris hawks optimization (HHO); nonorthogonal multiple access (NOMA); sum-rate maximization; swarm intelligence; unmanned aerial vehicles (UAVs); visible light communications (VLCs)
Citation
IEEE INTERNET OF THINGS JOURNAL, v.7, no.10, pp 10375 - 10387
Pages
13
Journal Title
IEEE INTERNET OF THINGS JOURNAL
Volume
7
Number
10
Start Page
10375
End Page
10387
URI
https://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/28329
DOI
10.1109/JIOT.2020.2988930
ISSN
2327-4662
Abstract
As the integration of unmanned aerial vehicles (UAVs) into visible light communications (VLCs) can offer many benefits for massive-connectivity applications and services in 5G and beyond, this article considers a UAV-assisted VLC using nonorthogonal multiple-access. More specifically, we formulate a joint problem of power allocation and UAV's placement to maximize the sum rate of all users, subject to constraints on power allocation, quality of service of users, and UAV's position. Since the problem is nonconvex and NP-hard in general, it is difficult to be solved optimally. Moreover, the problem is not easy to be solved by conventional approaches, e.g., coordinate descent algorithms, due to channel modeling in VLC. Therefore, we propose using the Harris hawks optimization (HHO) algorithm to solve the formulated problem and obtain an efficient solution. We then use the HHO algorithm together with artificial neural networks to propose a design that can be used in real-time applications and avoid falling into the "local minima" trap in conventional trainers. Numerical results are provided to verify the effectiveness of the proposed algorithm and further demonstrate that the proposed algorithm/HHO trainer is superior to several alternative schemes and existing metaheuristic algorithms.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE