Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ternary nanocomposites of ZnFe<sub>2</sub>O<sub>4</sub>/NiFe<sub>2</sub>O<sub>4</sub>/CeO<sub>2</s ub>: Investigating electrochemical energy storage and biocompatible properties

Authors
Manohar, AlaSuvarna, ThirukachhiVattikuti, S. V. PrabhakarSudhani, Hemanth P. K.Manivasagan, PanchanathanJang, Eue-SoonAl-Asbahi, Bandar AliMameda, NareshKim, Ki Hyeon
Issue Date
Oct-2024
Publisher
ELSEVIER SCI LTD
Keywords
Composites; ZnFe2O4; NiFe2O4; CeO2; Electrochemical properties; Cytotoxicity
Citation
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, v.12, no.5
Journal Title
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING
Volume
12
Number
5
URI
https://scholarworks.bwise.kr/kumoh/handle/2020.sw.kumoh/28831
DOI
10.1016/j.jece.2024.113337
ISSN
2213-2929
2213-3437
Abstract
Supercapacitors are gaining traction as promising energy storage solutions, due to their exceptional characteristics. Leveraging nanocomposites is pivotal in significantly boosting these properties. Nanocomposites, with their optimal size and surface area, play a crucial role in advancing electrochemical processes. They pave the way for improving the performance and stability of supercapacitors, positioning them as promising contenders for a wide array of energy storage applications. Ternary nanocomposites hold great promise for enhancing the performance and functionality of supercapacitors, making them attractive for various energy storage needs. Notably, the nanocomposite prepared at 600 degrees C showed the best BET surface area of 43.27 m(2)g(-1), indicating a mesoporous structure. The ZnFe2O4/NiFe2O4/CeO2 nanocomposite, calcined at 700 degrees C, shows a specific capacitance (Cs) value of 102.4 Fg(-1) at a current density of 0.25 Ag-1, indicating improved electrochemical performance compared to ZnFe2O4/NiFe2O4/CeO2 nanocomposite calcined at 600 degrees C. The electrochemical tests indicated high reversibility in oxidation and reduction processes, indicating that the produced nanocomposites are suitable as electrode materials for supercapacitor uses. Furthermore, the produced nanocomposites showed promising cell viability on both the Mouse muscle fibroblast (BLO-11) and Human breast cancer (MDA-MB-231) cell lines, respectively. These findings highlight the importance of understanding nanocomposite composition when evaluating their safety for future biological applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Department of Applied Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jang, Eue-Soon photo

Jang, Eue-Soon
College of Engineering (Department of Chemistry and Bio-Science)
Read more

Altmetrics

Total Views & Downloads

BROWSE