Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fully automated quantification of cardiac chamber and function assessment in 2-D echocardiography: clinical feasibility of deep learning-based algorithms

Authors
Kim, SekeunPark, Hyung-BokJeon, JaeikArsanjani, RezaHeo, RanLee, Sang-EunMoon, InkiYoo, Sun KookChang, Hyuk-Jae
Issue Date
May-2022
Publisher
Kluwer Academic Publishers
Keywords
Echocardiography; Deep learning; Fully automated
Citation
International Journal of Cardiovascular Imaging, v.38, no.5, pp 1047 - 1059
Pages
13
Journal Title
International Journal of Cardiovascular Imaging
Volume
38
Number
5
Start Page
1047
End Page
1059
URI
https://scholarworks.bwise.kr/sch/handle/2021.sw.sch/20725
DOI
10.1007/s10554-021-02482-y
ISSN
1569-5794
1573-0743
Abstract
We aimed to compare the segmentation performance of the current prominent deep learning (DL) algorithms with ground-truth segmentations and to validate the reproducibility of the manually created 2D echocardiographic four cardiac chamber ground-truth annotation. Recently emerged DL based fully-automated chamber segmentation and function assessment methods have shown great potential for future application in aiding image acquisition, quantification, and suggestion for diagnosis. However, the performance of current DL algorithms have not previously been compared with each other. In addition, the reproducibility of ground-truth annotations which are the basis of these algorithms have not yet been fully validated. We retrospectively enrolled 500 consecutive patients who underwent transthoracic echocardiogram (TTE) from December 2019 to December 2020. Simple U-net, Res-U-net, and Dense-U-net algorithms were compared for the segmentation performances and clinical indices such as left atrial volume (LAV), left ventricular end diastolic volume (LVEDV), left ventricular end systolic volume (LVESV), LV mass, and ejection fraction (EF) were evaluated. The inter- and intra-observer variability analysis was performed by two expert sonographers for a randomly selected echocardiographic view in 100 patients (apical 2-chamber, apical 4-chamber, and parasternal short axis views). The overall performance of all DL methods was excellent [average dice similarity coefficient (DSC) 0.91 to 0.95 and average Intersection over union (IOU) 0.83 to 0.90], with the exception of LV wall area on PSAX view (average DSC of 0.83, IOU 0.72). In addition, there were no significant difference in clinical indices between ground truth and automated DL measurements. For inter- and intra-observer variability analysis, the overall intra observer reproducibility was excellent: LAV (ICC = 0.995), LVEDV (ICC = 0.996), LVESV (ICC = 0.997), LV mass (ICC = 0.991) and EF (ICC = 0.984). The inter-observer reproducibility was slightly lower as compared to intraobserver agreement: LAV (ICC = 0.976), LVEDV (ICC = 0.982), LVESV (ICC = 0.970), LV mass (ICC = 0.971), and EF (ICC = 0.899). The three current prominent DL-based fully automated methods are able to reliably perform four-chamber segmentation and quantification of clinical indices. Furthermore, we were able to validate the four cardiac chamber ground-truth annotation and demonstrate an overall excellent reproducibility, but still with some degree of inter-observer variability.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Internal Medicine > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher MOON, In ki photo

MOON, In ki
College of Medicine (Department of Internal Medicine)
Read more

Altmetrics

Total Views & Downloads

BROWSE