Detailed Information

Cited 0 time in webofscience Cited 2 time in scopus
Metadata Downloads

Formation of Nanochannels Using Polypropylene and Acetylcellulose for Stable Separatorsopen access

Authors
Lee, Hye JiCho, YounghyunKang, Sang Wook
Issue Date
Aug-2022
Publisher
Molecular Diversity Preservation International
Keywords
separator; battery; thermal stability; cellulose; channel
Citation
Membranes, v.12, no.8, pp 1 - 10
Pages
10
Journal Title
Membranes
Volume
12
Number
8
Start Page
1
End Page
10
URI
https://scholarworks.bwise.kr/sch/handle/2021.sw.sch/21367
DOI
10.3390/membranes12080764
ISSN
2077-0375
Abstract
In this study, a polymer separator with enhanced thermal stability is prepared to solve the problem of thermal durability of lithium-ion battery separators. This separator is manufactured by coating a solution of acetyl cellulose and glycerin on polypropylene. The added glycerin reacts with the acetyl cellulose chains, helping the chains become flexible, and promotes the formation of many pores in the acetyl cellulose. To improve the thermal stability of the separator, a mixed solution of acetyl cellulose and glycerin was coated twice on the PP membrane film. Water pressure is applied using a water treatment equipment to partially connect the pores of a small size in each layer and for the interaction between the PP and acetyl cellulose. SEM is used to observe the shape, size, and quantity of pores. TGA and FT-IR are used to observe the interactions. Average water flux data of the separators is 1.42 LMH and the decomposition temperature increases by about 60 degrees C compared to the neat acetyl cellulose. It is confirmed that there is an interaction with PP between the functional groups of acetyl cellulose.
Files in This Item
There are no files associated with this item.
Appears in
Collections
SCH Media Labs > Department of Energy Systems Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Young hyun photo

Cho, Young hyun
SCH Media Labs (에너지공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE