Detailed Information

Cited 2 time in webofscience Cited 0 time in scopus
Metadata Downloads

In-situ atomic level observation of the strain response of graphene latticeopen access

Authors
Juo, JY[Juo, Jz-Yuan]Shin, BG[Shin, Bong Gyu]Stiepany, W[Stiepany, Wolfgang]Memmler, M[Memmler, Marko]Kern, K[Kern, Klaus]Jung, SJ[Jung, Soon Jung]
Issue Date
11-Feb-2023
Publisher
NATURE PORTFOLIO
Citation
SCIENTIFIC REPORTS, v.13, no.1
Indexed
SCIE
SCOPUS
Journal Title
SCIENTIFIC REPORTS
Volume
13
Number
1
URI
https://scholarworks.bwise.kr/skku/handle/2021.sw.skku/102967
DOI
10.1038/s41598-023-29128-4
ISSN
2045-2322
Abstract
Strain is inevitable in two-dimensional (2D) materials, regardless of whether the film is suspended or supported. However, the direct measurement of strain response at the atomic scale is challenging due to the difficulties of maintaining both flexibility and mechanical stability at low temperature under UHV conditions. In this work, we have implemented a compact nanoindentation system with a size of similar to 160 mm(2) x 5.2 mm in a scanning tunneling microscope (STM) sample holder, which enables the reversible control of strain and gate electric field. A combination of gearbox and piezoelectric actuator allowed us to modulate the depth of the indentation continuously with nanometer precision. The 2D materials were transferred onto the polyimide film. Pd clamp was used to enhance the strain transfer from the polyimide from to the 2D layers. Using this unique technique, strain response of graphene lattice were observed at atomic precision. In the relaxed graphene, strain is induced mainly by local curvature. However, in the strained graphene with tented structure, the lattice parameters become more sensitive to the indentor height change and stretching strain is increased additionally. Moreover, the gate controllability is confirmed by measuring the dependence of the STM tip height on gate voltage.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > SKKU Advanced Institute of Nano Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE