Detailed Information

Cited 4 time in webofscience Cited 4 time in scopus
Metadata Downloads

Tuning the electronic properties of highly anisotropic 2D dangling-bond-free sheets from 1D V2Se9chain structures

Authors
Lee, W.-G.[Lee, W.-G.]Sung, D.[Sung, D.]Lee, J.[Lee, J.]Chung, Y.K.[Chung, Y.K.]Kim, B.J.[Kim, B.J.]Choi, K.H.[Choi, K.H.]Lee, S.H.[Lee, S.H.]Jeong, B.J.[Jeong, B.J.]Choi, J.-Y.[Choi, J.-Y.]Huh, J.[Huh, J.]
Issue Date
Feb-2021
Publisher
IOP Publishing Ltd
Keywords
V2Se9; anisotropic 2D materials; band structure; density functional theory
Citation
Nanotechnology, v.32, no.9
Indexed
SCIE
SCOPUS
Journal Title
Nanotechnology
Volume
32
Number
9
URI
https://scholarworks.bwise.kr/skku/handle/2021.sw.skku/89910
DOI
10.1088/1361-6528/abc6de
ISSN
0957-4484
Abstract
True one-dimensional (1D) van der Waals materials can form two-dimensional (2D) dangling-bond-free anisotropic surfaces. Dangling bonds on surfaces act as defects for transporting charge carriers. In this study, we consider true 1D materials to be V2Se9 chains, and then the electronic structures of 2D sheets composed of true 1D V2Se9 chains are calculated. The (010) plane has indirect bandgap with 0.757 eV (1.768 eV), while the (111) plane shows a nearly direct bandgap of 1.047 eV (2.118 eV) for DFT-D3 (HSE06) correction, respectively. The (111) plane of V2Se9 is expected to be used in optoelectronic devices because it contains a nearly direct bandgap. Partial charge analysis indicates that the (010) plane exhibits interchain interaction is stronger than the (111) plane. To investigate the strain effect, we increased the interchain distance of planes until an indirect-to-direct bandgap transition occurred. The (010) plane then demonstrated a direct bandgap when interchain distance increased by 30%, while the (111) plane demonstrated a direct bandgap when the interchain distance increased by 10%. In mechanical sensors, this change in the bandgap was induced by the interchain distance. © 2020 IOP Publishing Ltd.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Chemistry > 1. Journal Articles
Engineering > School of Advanced Materials Science and Engineering > 1. Journal Articles
Graduate School > Advanced Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher HUH, JOONSUK photo

HUH, JOONSUK
Science (Chemistry)
Read more

Altmetrics

Total Views & Downloads

BROWSE