Detailed Information

Cited 6 time in webofscience Cited 9 time in scopus
Metadata Downloads

Strategic Approach to Diversify Design Options for Li-Ion Batteries by Utilizing Low-Ni Layered Cathode Materials

Authors
Jeong, M.[Jeong, M.]Lee, W.[Lee, W.]Yun, S.[Yun, S.]Choi, W.[Choi, W.]Park, H.[Park, H.]Lee, E.[Lee, E.]Kim, J.[Kim, J.]Cho, S.J.[Cho, S.J.]Lee, N.-H.[Lee, N.-H.]Shin, H.-J.[Shin, H.-J.]Yoon, W.-S.[Yoon, W.-S.]
Issue Date
Feb-2022
Publisher
John Wiley and Sons Inc
Keywords
lithium ion batteries; low-Ni layered materials; Ni-rich layered materials; strategic approaches; synchrotron-based X-ray analysis
Citation
Advanced Energy Materials, v.12, no.7
Indexed
SCIE
SCOPUS
Journal Title
Advanced Energy Materials
Volume
12
Number
7
URI
https://scholarworks.bwise.kr/skku/handle/2021.sw.skku/92510
DOI
10.1002/aenm.202103052
ISSN
1614-6832
Abstract
Over the past few years, considerable attention has been paid to high-Ni layered cathode materials for high-energy Li-ion batteries (LIBs); however, these materials intrinsically have low thermal stability. Alternatively, the high-voltage operation of low-Ni materials may be one of the attractive ways to provide various options for designing advanced LIBs. Here, the structural, electrochemical, and thermal properties of LiNi0.5Co0.2Mn0.3O2 (NCM523) and LiNi0.80Co0.15Al0.05O2 (NCA) are investigated by setting up the same initial discharge capacity. In the high-voltage region, NCM523 exhibits less anisotropic lattice distortion and maintains wider Li-ion channels than NCA. After long-term cycling, reduced Ni ions are observed near the cracks, grain boundaries, or between the primary particles in both materials, however, the chemical states of the Ni ions in NCA are more heterogeneously distributed, and the particle pulverization and microcrack propagation are more prominent; the structural integrity and electrochemical properties of the material are degraded. Moreover, the cyclability and thermal stability of NCM523 are superior to those of NCA, despite the higher charge cut-off voltage of the former. Therefore, the utilization of low-Ni layered cathode materials operated at high voltage is a strategic approach to expand the design factors of advanced LIBs. © 2021 Wiley-VCH GmbH
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Energy Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher YOON, WON SUB photo

YOON, WON SUB
Institute for Cross-disciplinary Studies (ICS) (Energy)
Read more

Altmetrics

Total Views & Downloads

BROWSE