Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

SNR-Enhanced, Rapid Electrical Conductivity Mapping Using Echo-Shifted MRI

Authors
Lee, H.[Lee, H.]Park, J.[Park, J.]
Issue Date
Feb-2022
Publisher
MDPI
Keywords
Echo-shifted MRI; Electrical conductivity; Magnetic resonance electrical impedance tomography (MREIT); Magnetic resonance imaging (MRI); Steady-state incoherent imaging
Citation
Tomography, v.8, no.1, pp.376 - 388
Indexed
SCIE
SCOPUS
Journal Title
Tomography
Volume
8
Number
1
Start Page
376
End Page
388
URI
https://scholarworks.bwise.kr/skku/handle/2021.sw.skku/96670
DOI
10.3390/tomography8010031
ISSN
2379-1381
Abstract
Magnetic resonance electrical impedance tomography (MREIT) permits high-spatial resolution electrical conductivity mapping of biological tissues, and its quantification accuracy hinges on the signal-to-noise ratio (SNR) of the current-induced magnetic flux density (Bz). The purpose of this work was to achieve Bz SNR-enhanced rapid conductivity imaging by developing an echo-shifted steady-state incoherent imaging-based MREIT technique. In the proposed pulse sequence, the free-induction-decay signal is shifted in time over multiple imaging slices, and as a result is exposed to a plurality of injecting current pulses before forming an echo. Thus, the proposed multi-slice echo-shifting strategy allows a high SNR for Bz for a given number of current injections. However, with increasing the time of echo formation, the Bz SNR will also be compromised by T2*-related signal loss. Hence, numerical simulations were performed to evaluate the relationship between the echo-shifting and the Bz SNR, and subsequently to determine the optimal imaging parameters. Experimental studies were conducted to evaluate the effectiveness of the proposed method over conventional spin-echo-based MREIT. Compared with the reference spin-echo MREIT, the proposed echo-shifting-based method improves the efficiency in both data acquisition and current injection while retaining the accuracy of conductivity quantification. The results suggest the feasibility of the proposed MREIT method as a practical means for conductivity mapping. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Files in This Item
There are no files associated with this item.
Appears in
Collections
SKKU Institute for Convergence > Biomedical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher PARK, JAE SEOK photo

PARK, JAE SEOK
Institute for Cross-disciplinary Studies (ICS) (Biomedical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE