Detailed Information

Cited 3 time in webofscience Cited 0 time in scopus
Metadata Downloads

MP-Net: Deep learning-based segmentation for fluorescence microscopy images of microplastics isolated from clamsopen access

Authors
Park, HM[Park, Ho-min]Park, S[Park, Sanghyeon]de Guzman, MK[de Guzman, Maria Krishna]Baek, JY[Baek, Ji Yeon]Velickovic, TC[Velickovic, Tanja Cirkovic]Van Messem, A[Van Messem, Arnout]De Neve, W[De Neve, Wesley]
Issue Date
2022
Publisher
PUBLIC LIBRARY SCIENCE
Citation
PLOS ONE, v.17, no.6
Indexed
SCIE
SCOPUS
Journal Title
PLOS ONE
Volume
17
Number
6
URI
https://scholarworks.bwise.kr/skku/handle/2021.sw.skku/99797
DOI
10.1371/journal.pone.0269449
ISSN
1932-6203
Abstract
Environmental monitoring of microplastics (MP) contamination has become an area of great research interest, given potential hazards associated with human ingestion of MP. In this context, determination of MP concentration is essential. However, cheap, rapid, and accurate quantification of MP remains a challenge to this date. This study proposes a deep learning-based image segmentation method that properly distinguishes fluorescent MP from other elements in a given microscopy image. A total of nine different deep learning models, six of which are based on U-Net, were investigated. These models were trained using at least 20,000 patches sampled from 99 fluorescence microscopy images of MP and their corresponding binary masks. MP-Net, which is derived from U-Net, was found to be the best performing model, exhibiting the highest mean F-1-score (0.736) and mean IoU value (0.617). Test-time augmentation (using brightness, contrast, and HSV) was applied to MPNet for robust learning. However, compared to the results obtained without augmentation, no clear improvement in predictive performance could be observed. Recovery assessment for both spiked and real images showed that, compared to already existing tools for MP quantification, the MP quantities predicted by MP-Net are those closest to the ground truth. This observation suggests that MP-Net allows creating masks that more accurately reflect the quantitative presence of fluorescent MP in microscopy images. Finally, MAP (Microplastics Annotation Package) is introduced, an integrated software environment for automated MP quantification, offering support for MP-Net, already existing MP analysis tools like MPVAT, manual annotation, and model fine-tuning.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Samsung Advanced Institute for Health Sciences and Technology, SKKU > Samsung Advanced Institute for Health Sciences and Technology, SKKU > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE