Detailed Information

Cited 1 time in webofscience Cited 0 time in scopus
Metadata Downloads

Bayesian Inference for Mixed Model-Based Genome-Wide Analysis of Expression Quantitative Trait Loci by Gibbs Sampling

Authors
Lee, Chaeyoung
Issue Date
Mar-2019
Publisher
FRONTIERS MEDIA SA
Keywords
Markov chain Monte Carlo; expression quantitative trait locus; genetic association; Gibbs sampling; mixed model; polygenic variance component; posterior; random effect
Citation
FRONTIERS IN GENETICS, v.10
Journal Title
FRONTIERS IN GENETICS
Volume
10
URI
http://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/32315
DOI
10.3389/fgene.2019.00199
ISSN
1664-8021
Abstract
The importance of expression quantitative trait locus (eQTL) has been emphasized in understanding the genetic basis of cellular activities and complex phenotypes. Mixed models can be employed to effectively identify eQTLs by explaining polygenic effects. In these mixed models, the polygenic effects are considered as random variables, and their variability is explained by the polygenic variance component. The polygenic and residual variance components are first estimated, and then eQTL effects are estimated depending on the variance component estimates within the frequentist mixed model framework. The Bayesian approach to the mixed model-based genome-wide eQTL analysis can also be applied to estimate the parameters that exhibit various bene fits. Bayesian inferences on unknown parameters are based on their marginal posterior distributions, and the marginalization of the joint posterior distribution is a challenging task. This problem can be solved by employing a numerical algorithm of integrals called Gibbs sampling as a Markov chain Monte Carlo. This article reviews the mixed model-based Bayesian eQTL analysis by Gibbs sampling. Theoretical and practical issues of Bayesian inference are discussed using a concise description of Bayesian modeling and the corresponding Gibbs sampling. The strengths of Bayesian inference are also discussed. Posterior probability distribution in the Bayesian inference reflects uncertainty in unknown parameters. This factor is useful in the context of eQTL analysis where a sample size is too small to apply the frequentist approach. Bayesian inference based on the posterior that reflects prior knowledge, will be increasingly preferred with the accumulation of eQTL data. Extensive use of the mixed model-based Bayesian eQTL analysis will accelerate understanding of eQTLs exhibiting various regulatory functions.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Natural Sciences > School of Systems and Biomedical Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Chaeyoung photo

Lee, Chaeyoung
College of Natural Sciences (Department of Bioinformatics & Life Science)
Read more

Altmetrics

Total Views & Downloads

BROWSE