Detailed Information

Cited 20 time in webofscience Cited 20 time in scopus
Metadata Downloads

Ultra-Adaptable and Wearable Photonic Skin Based on a Shape-Memory, Responsive Cellulose Derivative

Full metadata record
DC Field Value Language
dc.contributor.authorYi, H.-
dc.contributor.authorLee, S.-H.-
dc.contributor.authorKo, H.-
dc.contributor.authorLee, D.-
dc.contributor.authorBae, W.-G.-
dc.contributor.authorKim, T.-I.-
dc.contributor.authorHwang, D.S.-
dc.contributor.authorJeong, H.E.-
dc.date.available2019-06-18T07:40:02Z-
dc.date.created2019-06-18-
dc.date.issued2019-08-
dc.identifier.issn1616-301X-
dc.identifier.urihttp://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/34845-
dc.description.abstractPhotonic skins enable a direct and intuitive visualization of various physical and mechanical stimuli with eye-readable colorations by intimately laminating to target substrates. Their development is still at infancy compared to that of electronic skins. Here, an ultra-adaptable, large-area (10 × 10 cm2), multipixel (14 × 14) photonic skin based on a naturally abundant and sustainable biopolymer of a shape-memory, responsive multiphase cellulose derivative is presented. The wearable, multipixel photonic skin mainly consists of a photonic sensor made of mesophase cholesteric hydroxypropyl cellulose and an ultra-adaptable adhesive layer made of amorphous hydroxypropyl cellulose. It is demonstrated that with multilayered flexible architectures, the multiphase cellulose derivative–based integrated photonic skin can not only strongly couple to a wide range of biological and engineered surfaces, with a maximum of ≈180 times higher adhesion strengths compared to those of the polydimethylsiloxane adhesive, but also directly convert spatiotemporal stimuli into visible color alterations in the large-area, multipixel array. These colorations can be simply converted into 3D strain mapping data with digital camera imaging. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.language영어-
dc.language.isoen-
dc.publisherWiley-VCH Verlag-
dc.relation.isPartOfAdvanced Functional Materials-
dc.titleUltra-Adaptable and Wearable Photonic Skin Based on a Shape-Memory, Responsive Cellulose Derivative-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.201902720-
dc.type.rimsART-
dc.identifier.bibliographicCitationAdvanced Functional Materials, v.29, no.34, pp.1902720-
dc.description.journalClass1-
dc.identifier.wosid000481931200004-
dc.identifier.scopusid2-s2.0-85066905033-
dc.citation.number34-
dc.citation.startPage1902720-
dc.citation.titleAdvanced Functional Materials-
dc.citation.volume29-
dc.contributor.affiliatedAuthorBae, W.-G.-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.subject.keywordAuthorcolorimetric sensor-
dc.subject.keywordAuthordry adhesive-
dc.subject.keywordAuthorhydroxypropyl cellulose (HPC)-
dc.subject.keywordAuthorphotonic skin-
dc.subject.keywordAuthorskin patch-
dc.subject.keywordPlusAdhesives-
dc.subject.keywordPlusCellulose-
dc.subject.keywordPlusCellulose derivatives-
dc.subject.keywordPlusSilicones-
dc.subject.keywordPlusColorimetric sensors-
dc.subject.keywordPlusDry adhesive-
dc.subject.keywordPlusEngineered surfaces-
dc.subject.keywordPlusFlexible architectures-
dc.subject.keywordPlusHydroxypropyl cellulose-
dc.subject.keywordPlusIntegrated photonics-
dc.subject.keywordPlusMechanical stimulus-
dc.subject.keywordPlusSkin patch-
dc.subject.keywordPlusWearable sensors-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Bae, Won Gyu photo

Bae, Won Gyu
College of Engineering (School of Electrical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE