Detailed Information

Cited 6 time in webofscience Cited 7 time in scopus
Metadata Downloads

Highly Active and Durable Ordered Intermetallic PdFe Electrocatalyst for Formic Acid Electrooxidation Reaction

Full metadata record
DC FieldValueLanguage
dc.contributor.authorKang, Yun Sik-
dc.contributor.authorChoi, Daeil-
dc.contributor.authorCho, Jinwon-
dc.contributor.authorPark, Hee-Young-
dc.contributor.authorLee, Kug-Seung-
dc.contributor.authorAhn, Minjeh-
dc.contributor.authorJang, Injoon-
dc.contributor.authorPark, Taehyun-
dc.contributor.authorHam, Hyung Chul-
dc.contributor.authorYoo, Sung Jong-
dc.date.available2020-08-19T06:05:06Z-
dc.date.created2020-08-18-
dc.date.issued2020-05-
dc.identifier.issn2574-0962-
dc.identifier.urihttp://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/38452-
dc.description.abstractIn this paper, we report the preparation of a highly active and durable ordered intermetallic PdFe catalyst supported on carbon black for formic acid oxidation reaction (FAOR) by high-temperature heat treatment under a reductive atmosphere. We found that the ordered intermetallic PdFe catalyst exhibited considerably better catalytic activity and durability toward FAOR than the disordered PdFe and pure Pd catalysts because of the high alloying degree between Pd and Fe, which induced a downshift of the Pd d-band center and structural modifications that formed a superlattice crystalline structure with Pd surface segregation. We analyzed the improved catalytic properties of the ordered intermetallic PdFe catalyst through various electrochemical analyses such as cyclic voltammetry, CO oxidation methods, chronoamperometry, physicochemical analyses such as X-ray photoelectron spectroscopy, and synchrotron radiation methods such as X-ray absorption spectroscopy. Density functional theory calculation verified the improved FAOR activity of the ordered intermetallic PdFe catalyst. In addition, a single cell based on the ordered intermetallic PdFe catalyst was also fabricated and exhibited enhanced cell performance compared to those based on the other catalysts. To the best of our knowledge, this is the first study on the preparation of an ordered intermetallic PdFe catalyst for FAOR with real single-cell application in direct formic acid fuel cells (DFAFCs). We believe that our results will be helpful for the development of highly active and durable Pd alloy catalysts for FAOR and the commercialization of DFAFC.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfACS APPLIED ENERGY MATERIALS-
dc.titleHighly Active and Durable Ordered Intermetallic PdFe Electrocatalyst for Formic Acid Electrooxidation Reaction-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.9b02389-
dc.type.rimsART-
dc.identifier.bibliographicCitationACS APPLIED ENERGY MATERIALS, v.3, no.5, pp.4226 - 4237-
dc.description.journalClass1-
dc.identifier.wosid000537656400022-
dc.identifier.scopusid2-s2.0-85087589357-
dc.citation.endPage4237-
dc.citation.number5-
dc.citation.startPage4226-
dc.citation.titleACS APPLIED ENERGY MATERIALS-
dc.citation.volume3-
dc.contributor.affiliatedAuthorPark, Taehyun-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.subject.keywordAuthorformic acid oxidation reaction-
dc.subject.keywordAuthorPdFe nanoparticles-
dc.subject.keywordAuthorPdFe intermetallic structure-
dc.subject.keywordAuthordirect formic acid fuel cell-
dc.subject.keywordAuthordensity functional theory calculation-
dc.subject.keywordAuthorX-ray spectroscopy-
dc.subject.keywordPlusFUEL-CELLS-
dc.subject.keywordPlusELECTRONIC-STRUCTURE-
dc.subject.keywordPlusCO2 REDUCTION-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusALLOY-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusDECOMPOSITION-
dc.subject.keywordPlusPALLADIUM-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Taehyun photo

Park, Taehyun
College of Engineering (School of Mechanical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE