Detailed Information

Cited 3 time in webofscience Cited 2 time in scopus
Metadata Downloads

Strain-sensing properties of multi-walled carbon nanotube/polydimethylsiloxane composites with different aspect ratio and filler contents

Authors
Hur, O.-N.Ha, J.-H.Park, S.-H.
Issue Date
Jun-2020
Publisher
MDPI AG
Keywords
Aspect ratio; Carbon nanotube; Hysteresis; Polymer composite; Strain sensor
Citation
Materials, v.13, no.11
Journal Title
Materials
Volume
13
Number
11
URI
http://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/38623
DOI
10.3390/ma13112431
ISSN
1996-1944
Abstract
For filler composite systems used in strain sensor applications, piezoresistive effect, strain hysteresis, and repeatability are critical factors, which have to be clearly evaluated and understood. To investigate the effects of the aspect ratio and content of a multi-walled carbon nanotube (MWCNT) on the strain sensor properties of the composite, MWCNT/Polydimethylsiloxane (PDMS) composites with varying filler contents and aspect ratios were fabricated. In order to uniformly disperse MWCNTs on the polymer matrix, we used a three-roll milling method to generate high shear force for de-bundling MWCNTs. Mechanical and electrical properties of the MWCNT composites were evaluated for each case. In addition, through the cyclic stretching test, we optimized the strain-sensing properties of the MWCNT composites by considering their piezoresistive effects and strain hysteresis. © 2020 by the authors.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Sung-Hoon photo

Park, Sung-Hoon
College of Engineering (School of Mechanical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE