Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Euodia pasteuriana Methanol Extract Exerts Anti-Inflammatory Effects by Targeting TAK1 in the AP-1 Signaling Pathway

Authors
Zhang, JianmeiKim, Mi-YeonCho, Jae Youl
Issue Date
Dec-2020
Publisher
MDPI
Keywords
Euodia pasteuriana; anti-inflammatory; AP-1; TAK1
Citation
MOLECULES, v.25, no.23
Journal Title
MOLECULES
Volume
25
Number
23
URI
http://scholarworks.bwise.kr/ssu/handle/2018.sw.ssu/40393
DOI
10.3390/molecules25235760
ISSN
1420-3049
Abstract
Euodia pasteuriana A. Chev. ex Guillaumin, also known as Melicope accedens (Blume) T.G. Hartley, is a herbal medicinal plant native to Vietnam. Although Euodia pasteuriana is used as a traditional medicine to treat a variety of inflammatory diseases, the pharmacological mechanisms related to this plant are unclear. This study aimed to investigate the anti-inflammatory effects of a methanol extract of Euodia pasteuriana leaves (Ep-ME) on the production of inflammatory mediators, the mRNA expression of proinflammatory genes, and inflammatory signaling activities in macrophage cell lines. The results showed that Ep-ME strongly suppressed the release of nitric oxide (NO) in RAW264.7 cells induced with lipopolysaccharide (LPS), pam3CysSerLys4 (Pam3CSK), and polyinosinic-polycytidylic acid (poly I:C) without cytotoxicity. A reverse transcription-polymerase chain reaction further confirmed that Ep-ME suppressed the expression of interleukin 6 (IL-6), matrix metalloproteinase-1 (MMP1), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-3 (MMP3), tumor necrosis factor-alpha (TNF-alpha), and matrix metalloproteinase-9 (MMP9) at the transcriptional level and reduced the luciferase activities of activator protein 1 (AP-1) reporter promoters. In addition, immunoblotting analyses of the whole lysate and nuclear fraction, as well as overexpression assays demonstrated that Ep-ME decreased the translocation of c-Jun and suppressed the activation of transforming growth factor beta-activated kinase 1 (TAK1) in the AP-1 signaling pathways. These results imply that Ep-ME could be developed as an anti-inflammatory agent that targets TAK1 in the AP-1 signaling pathway.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Natural Sciences > School of Systems and Biomedical Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Mi Yeon photo

Kim, Mi Yeon
College of Natural Sciences (Department of Bioinformatics & Life Science)
Read more

Altmetrics

Total Views & Downloads

BROWSE